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ABSTRACT 
Astral is a prototyping tool for authoring mobile and smart 
object interactive behaviours. It mirrors selected display con-
tents of desktop applications onto mobile devices 
(smartphones and smartwatches), and streams/remaps mo-
bile sensor data to desktop input events (mouse or keyboard) 
to manipulate selected desktop contents. This allows design-
ers to use familiar desktop applications (e.g. PowerPoint, Af-
terEffects) to prototype rich interactive behaviours. Astral 
combines and integrates display mirroring, sensor streaming 
and input remapping, where designers can exploit familiar 
desktop applications to prototype, explore and fine-tune dy-
namic interactive behaviours. With Astral, designers can vis-
ually author rules to test real-time behaviours while interac-
tions take place, as well as after the interaction has occurred. 
We demonstrate Astral’s applicability, workflow and expres-
siveness within the interaction design process through both 
new examples and replication of prior approaches that illus-
trate how various familiar desktop applications are leveraged 
and repurposed. 

Author Keywords 
Prototyping; design tool; interactive behaviour; smart ob-
jects; mobile interfaces.  

CCS Concepts 
• Human-centered computing → Interface design proto-
typing; User interface toolkits 
INTRODUCTION 
Smart interactive devices such as mobile devices, wearables 
and smart objects vary widely in input and output, physical 
form, and development platforms. When prototyping inter-
active behaviors for these devices, designers are faced with 
two options. The first option is to build prototypes directly 
on the target device or platform. This involves programming 

and, in some cases, circuit building or soldering (when pro-
totyping in physical computing). As a result, implementation 
details consume the majority of designers’ time and re-
sources (e.g., code setup, learning the platform, program-
ming basic visuals), instead of important early-stage design 
decisions such as exploring alternative solutions or defining 
elements of animation and interaction [13]. The alternative 
option is to explore a device’s interaction via desktop-based 
prototyping tools (e.g. InVision). However, such prototyping 
tools often specialize in specific tasks (e.g. wireframing, 
standard UI widgets, creating animations as videos) without 
room for integrating different workflows [39]. Furthermore, 
while some tools support deploying prototypes on mobile de-
vices, they often do not support live sensor input other than 
touch events on simple trigger action states. This limits de-
signers’ ability to envision how the interaction might play out 
on the target device [25]. Exploring and fine-tuning respon-
sive behaviours is crucial for interactions that (1) go beyond 
standard UI patterns on mobile platforms; (2) involve the tar-
get device’s physical form or possible physical actions (e.g. 
shaking the device); and (3) contain nuanced continuous an-
imations that play out as the inputs are happening (e.g. slide 
to unlock). In these situations, designers should be able to 
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Figure 1. Astral allows designers to prototype interactive behav-
iours by (1) mirroring contents of a desktop region to a mobile 
device, (2) streaming mobile sensor data to the desktop, and 
(3) remapping the sensor data into desktop input (e.g. mouse and 
keyboard events) on a designer-chosen desktop application. 
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explore the dynamic interplay between inputs and outputs as 
interaction happens. We aim to empower designers to envi-
sion these responsive behaviours in their prototypes, a pro-
cess that is currently not facilitated by existing tools in re-
search and industry. 

ASTRAL 
We introduce Astral (Figure 1 & video figure), a prototyping 
tool that uses mirroring, streaming and input remapping via 
simple rules to enable designers to author, test, and fine-tune 
interactive behaviour in mobile devices using familiar appli-
cations. We achieve this through the following three steps: 

1. Mirroring Desktop Visual Content to a Mobile Display. 
Astral consists of a desktop client and a mobile client appli-
cation. As shown in Figure 1.1, the designer selects a region 
(here a web browser running Flappy Bird) to mirror it to a 
connected mobile (phone or watch) display. The mobile dis-
play is then updated live as the desktop display refreshes.  

2. Streaming Mobile Sensor Data to Provide Input. As 
shown in Figure 1.2, a designer can select data from multiple 
types of sensors, such as touch, acceleration, ambient light or 
the microphone. In this case, the designer enables the touch 
sensor to be streamed back to the Astral desktop client. Every 
time the designer now taps the mobile display, the touch lo-
cation is visualized on the Astral desktop client. 

3. Interactivity via Input Remapping. As shown in Fig-
ure 1.3, the designer can provide interactivity to the mirrored 
display by remapping the mobile sensor data to desktop key-
board or mouse inputs. Here, by remapping a mobile touch 
down event to a desktop spacebar keypress, the bird in the 
mirrored web browser can flap its wings. The designer can 
visually select the entire screen of the phone to sense touch 
events. Designers now have a greater range of expressive-
ness: they can prototype and fine-tune interactive behav-
iours, such as continuous and discrete actions, apply interac-
tive animation easing functions, or emulate states. 

While we primarily focus on mobile interactions, Astral’s 
building blocks and workflow also translate to prototyping 
smart object behaviours. Instead of challenging designers to 
solder, create custom circuitry and program electronics [5], 
our mobile focus by extension allows designers to place mo-
bile devices into a fabricated shell and repurpose their inputs 
and outputs (e.g. as shown in Soul–Body Prototyping [32], 
Nintendo Labo [68], Sauron [56], AMI [57]) and continue 
working with familiar desktop applications. 
Benefits and Contributions 
Astral is informed directly by (1) prior formative studies [39, 
49, 63, 64]; (2) state of the art tools in research and industry; 
and (3) our experiences talking to designers, teaching inter-
action design to designers and computer scientists, and cre-
ating prototyping tools and toolkits for behaviour authoring. 
Astral makes the following contributions:  

1. Enabling Designers to Leverage and Repurpose Famil-
iar Applications to Prototype Interactive Behaviours. As-
tral combines and integrates display mirroring, sensor 
streaming and input remapping, where designers can exploit 
desktop applications (e.g. PowerPoint, AfterEffects, 
Chrome) [39, 63, 64] in a novel manner for prototyping in-
teractive behaviours. Because any desktop application can be 
mirrored via Astral, any sensor data can be remapped to the 
mouse and keyboard events understood by that desktop ap-
plication. Astral facilitates a tight design-test-refine cycle on 
target devices without needing to write code through encap-
sulation of sensor data and mappings into rules, and imme-
diate interactive preview. Astral is designed to support vari-
ous interaction design practices (getting the right de-
sign [16]), including: video-based prototyping, prototyping 
multiple alternatives, iterative prototyping, and smart object 
prototyping (by placing mobile devices into physical forms 
[32, 56, 57, 68]). 

2. Allowing Designers to Visually Author Dynamic Inter-
actions Based on Continuous Sensor Data. The common 
state model approach (e.g. d.tools [23], Adobe XD, inVision) 
does not lend itself well to dynamic visuals and fine-tuned 
temporal aspects of user interface behaviour. By working 
with and visualizing continuous streams of sensor data, and 
mapping (and easing) these to continuous outputs, our work 
enables authoring “user-in-the-loop behaviours, where con-
tinuous user input drives the behaviour” [21, pp. 31] without 
coding. This goes beyond prior prototyping tools (e.g. Exem-
plar [22]) that focus on supporting designers in authoring in-
teractive behaviours based on discrete events extracted from 
continuous sensor data [21, pp. 99]. Moreover, Astral’s con-
tinuous behaviours focus on how the input becomes animated 
as output while the action takes place. 

RELATED WORK AND GOALS 
The goal of our prototyping tool is to author nuanced inter-
active behaviour on mobile devices. In this paper, we con-
sider ‘interactive behaviour’ as the ‘feel’ of a prototype [49] 
that cannot be easily conveyed through a physical sketch and 
tends to require programming. ‘Feel’ emerges from not only 
the outputs once interactions happen, but also as interactions 
happen – a dynamic interplay discussed in past work on pro-
gressive feedback [62] and animation applications [18, 19].  

We situate our research among extensive prior work on 
toolkits and prototyping tools that help interaction designers 
define interactive behavior. The specific approach of our 
prototyping tool leverages and extends past work on stream-
ing sensor inputs, mirroring display outputs, and remapping 
inputs across devices. Based on previous work, we identify a 
series of Design Goals (DG) for Astral. 

Prototyping Tools 
We draw heavily on prior work in prototyping tools where 
designers can quickly customize interactive behaviours (e.g. 
Adobe Flash [65]) and work with sensor input (e.g. Exem-
plar [22]), while leveraging existing applications (e.g. Ma-
Key MaKey [4]), thus reducing the need to program. Astral 



shares many goals of Programming by Demonstration ap-
proaches, including Exemplar [22], Improv [8], Gesture 
Morpher [54], Topaz [45], and SugiLite [36]. Unlike these 
approaches, however, Astral’s emphasis is not on recogni-
tion of actions and generalization from examples, but on 
providing designers with a means for open-ended authoring 
of continuous behaviours. 

Mobile Prototyping 
Fast prototyping not only relies on expressiveness, but also 
how quickly designers can preview and evaluate designs. 
Many interface prototyping tools feature live prototyping to 
help designers create interactive applications in both mobile 
contexts [1, 42, 44, 53] and physical computing contexts [22, 
23, 32]. Gummy Live [42] allows designers to create mobile 
interfaces live and see them reflected in the mobile device 
ready for modification. Similarly, de Sá et al. [53] created a 
tool that transitions from sketches on the target mobile de-
vice to Wizard of Oz [29] and higher fidelity prototypes. 
Thus, our first goal is to create a tool that prototypes live in-
teractive behavior on the target device (DG1). We further 
support liveness by running rules in real-time, including live 
previews as they are created. 

Physical Prototyping 
Mobile devices and smart objects often contain multiple sen-
sors, and designers often prototype behaviours based on sen-
sor data. In physical computing, authoring is channeled 
through specialized hardware (e.g. [4, 15, 61, 67]). Ar-
duino [66] in particular allows embedding multiple sensors 
into objects. The cost is that circuits and code exploiting the 
raw sensor data must be built from scratch, which can be dif-
ficult for novices, and introduces more opportunities for 
bugs [5]. Alternatively, designers can repurpose existing 
sensors and simplify authoring via prescribed interpretations 
for the sensor data [32, 56]. Exemplar [22] shows how visu-
alizations can help designers to make sense of sensor data. 
Thus, our second goal is to provide an end-user interface 
that allows designers to explore variations among mobile 
sensors (DG2). We achieve this goal and extend prior work 
by our use of visualizations. First, we use live visualizations 
tailored to each sensor type. The sensor data can be manipu-
lated to select its values and parameters for mapping. Sec-
ond, a live visualization lists all sensor data, which is rec-
orded alongside a synchronized video capture. As described 
later, these methods help increase expressive match [50].  
Extending Existing Infrastructures 
When working on top of existing infrastructures, toolkits can 
leverage existing functionality to quickly explore new types 
of interactions. Olsen [50] discusses how working with com-
mon infrastructures enables new technology combinations to 
support new solutions. For example, when pen input behaves 
as mouse input, mouse-based applications can now be used 
with a pen as the input device. Many prototyping tools in the 
research literature use this approach. Exemplar [22] and Ma-
Key MaKey [4] support remapping sensor input into mouse 
and keyboard events. ICon is a toolkit and editor [10] to cre-
ate input-reconfigurable interactive applications. 

More general-purpose tools look to augment existing desk-
top applications. For instance, Transmogrifiers [6] shows 
how dynamic desktop content (e.g. images, websites, videos) 
can be transformed on-the-fly to create free-form visualiza-
tions. Prefab [9] treats the desktop as a set of pixels, which 
can be reverse-engineered to enable new behaviour imple-
mentations on top of already existing interfaces (e.g. Bubble 
Cursor [17] on default menus). We extend the idea of work-
ing with the existing ecosystem of a desktop with its installed 
software and the native infrastructure (i.e. keyboard and 
mouse events). Instead of augmenting interaction with the 
existing application (as in Prefab [9]), we repurpose applica-
tions to author the mobile interactions.  

Some tools extend interaction across multiple devices (com-
mercial examples include TeamViewer [69] and VNC [52]). 
Semantic Snarfing [47] showed how a mobile device could 
act as a laser pointer to retrieve contents of a desktop. Myers 
[46] also examined how mobile devices could act as addi-
tional inputs to PCs (e.g. as a number pad). These systems 
stream mobile inputs (e.g. PDA pen events) to interact with 
the target application. Screen mirroring has a long history in 
HCI, dating back to systems such as Chameleon [12]. 
Gummy-Live [42] and D-Macs [43] leverage screen mirror-
ing so designers can bridge the desktop’s design environment 
and working with the target device. Montage [35] superim-
poses digital animated sketches on top of video prototypes. 
Virtual Projection [3] mirrors and augments a desktop’s con-
tent and provides additional interaction opportunities. 
WinCuts [59] uses real-time image-based mirroring which 
extends to multiple devices without support for input redi-
rection from the remote machines. 

Building on these ideas of repurposing keyboard and mouse 
events, streaming mobile input, and mirroring screen con-
tents, our third goal is to support the use of existing, familiar 
applications for prototyping (DG3). Astral enables design-
ers to use their own workflows and remap sensor input (e.g. 
accelerometer, touch events) into keyboard and mouse input 
that can control any familiar desktop application to prototype 
mobile interactions.  

Continuous Animation 
For designers to prototype interactive behaviors, they must 
not only be able to see continuous live effects from their in-
put (DG1), but also examine and modify how those effects 
take place atop familiar applications (DG3). Thus, Astral 
needs to support continuous animation in direct response to 
sensor changes as they occur (DG4) if it is to truly prototype 
nuanced interactive behaviors. One way to achieve this is 
through easings. Easing is a term used by Adobe Flash [65] 
to refer to the slow-in and slow-out principle of animation 
[60], in which the number of in-between frames are increased 
or decreased at keyframes between poses to create the illu-
sion that an object is speeding up or slowing down. Adobe 
Flash incorporated easings as a default linear tween that 
could be applied to motion tweens. Penner [51] created 
scripts for Flash to change the character of the easing through 



mathematical functions. We leverage prior work that ani-
mates as a function of continuous sensor input (e.g. [2, 11, 
38]) and extend Penner’s easing functions [51] – instead of 
it being a function of time, they work as a function of contin-
uous input (e.g. as done in [7, 18, 33, 40]) and we support 
their authoring as a way to fine-tune animations as continu-
ous sensor-based interactions happen. The easing functions 
can produce aesthetic experiences, as well as more utilitarian 
elements (e.g. balancing the sensitivity of an input’s effect). 
These continuous animations with easing functions are not 
explored in prior programming by demonstration ap-
proaches, which tend to favour recognition of discrete events 
from continuous sensor inputs (e.g. [22]). Astral extends this 
by authoring of interactive behaviour where continuous sen-
sor input drives continuous output without writing code.  

To recapitulate, Astral extends previous approaches by com-
bining existing techniques of mirroring, streaming and re-
mapping to feed into new building blocks: the creation of 
small, self-contained rules that drive a lively and animated 
prototype. These rules allow repurposing of familiar desktop 
applications in ways that have not been seen before. 

WORKING WITH ASTRAL 
The overarching idea behind Astral (as shown in Figure 1) is 
to allow designers to quickly prototype interactive behav-
iours on mobile devices. To ensure that designers can use or 

repurpose familiar desktop applications to author and test 
mobile interactive behaviours (DG3), we designed Astral as 
a desktop server that communicates with a client running on 
designer’s target mobile device.  

Main Interface 
Once the mobile client connects to the desktop application, 
the main view provides access to all of the functionality. We 
next describe the different functions provided in the main in-
terface (Figure 2a), which are later addressed in more detail. 

Mirror Desktop Contents. Designers can choose the region 
of the desktop that should be mirrored to the mobile client.  

Specify Input Remapping through Rules. Designers can au-
thor the intended interactive behaviour through the use of 
rules and rulesets (see following sections).  

Combine Rules into Rulesets. Active (authored) rules are 
shown on the screen, which can be edited via double click-
ing. Rules are by default added to the currently active ruleset.  

Visualize Sensor Data in the Sensor Selector. Designers can 
view all mobile sensors concurrently together with a video 
feed, record, playback and convert to rules.  

Mirroring Desktop Contents 
Clicking on the camera icon (Figure 2a), designers can mir-
ror display contents onto the connected mobile device. An 

 
Figure 2. Annotated Astral Interface.  (a) Main window streams content to mobile device and displays active rules; (b) When adding 
rules, the interface shows an interactive visualization from which designers select the range of sensor values to for input remapping. 



overlay region is shown, which the designer can move and 
scale to mirror onto the mobile device. We expect this region 
to typically contain the intended visual output created 
through the designer’s preferred application. The selection 
window contents are mirrored to the mobile client live. 

Specifying Input Remapping through Rules 
Once content is streamed to the mobile device, designers can 
author an interactive behaviour by defining a rule. A rule is 
a software abstraction that contains information as to how 
mobile sensor data is mapped to keyboard and mouse events. 
Each rule holds a sensor type, a range of values to which the 
mobile data is compared, and a mapping. Mappings encap-
sulate a source (mobile sensor input) and a destination (desk-
top mouse or keyboard event). To create a rule, the designer 
clicks on the ‘plus’ sign to open the Rule Editor – a guided 
interface to author or edit an input remapping rule. A partic-
ular configuration example is shown in Figure 2b.  

Selecting a Source: Sensor and Range of Values. The Rule 
Editor shows a list of sensors provided by the mobile device. 
A designer can choose the individual sensor of interest (Fig-
ure 2b side panel) to define the rule. Clicking on a sensor 
icon reveals a live visualization of the sensor and its values 
to help the designer understand (1) the particular sensor’s re-
sponse as the device is being manipulated (Figure 3), and 
(2) whether the sensor is appropriate to use. The visualiza-
tion is tailored to the selected sensor (and its parameters/in-
dividual data) to provide higher expressive match [50]. In the 
case of the accelerometer (Figure 2b), the designer can select 
which parameter to observe (e.g. the x-dimension). They can 
then constrain the sensor to a range of values (e.g. between 
5 m/s2 and 5 m/s2). Sensor readings can be further trans-
formed by applying prepackaged filters (e.g. extracting grav-
ity and linear acceleration values from the acceleration). 

Remapping the Source to a Destination Desktop Input. The 
designer can now map the mobile device sensor and its range 
of values to a desktop (mouse or keyboard) input, also con-
sisting of a type of input and a range of values. Astral then 
interpolates between these two ranges of values. For exam-
ple, when mapping to a mouse-move event, the designer can 
specify the destination range of pixel-coordinates by manip-
ulating a rectangular selection. For mouse wheel events, in-
puts map to a variable mouse wheel scrolling range, as shown 
in Figure 2-B (Windows default scrolling: 120 pixels per 
step). For keyboard events, designers can specify an event 
(i.e. key down, key press, or key up) and the associated key 
(e.g. arrow left, spacebar). Keys can be typed or selected 
from a list of operating system defined keys (e.g. volume 
controls, media playback). Through keyboard remapping, 
the system can also trigger hotkeys to the active application. 

We support discrete and continuous inputs (as categorized 
by Exemplar [22]) through consistent abstractions. Design-
ers always select a range of values from the source input 
(Figure 3), and map it to a range of values of a destination 
mouse or keyboard event. The system automatically maps 
the values from one range to the other. If a continuous sensor 
(e.g. a range of values of the compass) is mapped to a con-
tinuous destination (e.g. a mouse-move with range of coor-
dinates), the values are interpolated (which can be further al-
tered via inversion or easing functions). In the case where 
either source or destination inputs only provide two values, 
the system still performs the interpolation. For example, a 
proximity sensor (with values 0 or 1) mapped to a mouse-
move will only (abruptly) move to the beginning or end of 
the range of mouse coordinates. In such a case, perhaps a 
mapping to another input, such as a key-press might be more 
sensible, as the mapping will be one-to-one, if the sensor 
reads 1, the command for the key is pressed, otherwise the 
key is released. On the other hand, if the sensor values are 
continuous (e.g. range within accelerometer-x) and mapped 
to a binary input (e.g. key-press), the key down is triggered 

 
Figure 3. Astral provides interactive visualizations for different 
sensors: (a) compass, (b) touchscreen, (c) ambient light. Se-
lected areas of interest are highlighted in yellow. 

 
Figure 4. Astral’s Sensor Selector records sensor along with a 
webcam video feed. A range of values can be selected (green) to 
open the Rule Editor with the sensor and values predefined. 



once the sensor value enters a selection range that is specified 
by the designer (orange range in Figure 3-C), and releasing 
via key up will be triggered once the sensor value exits that 
selection. Note that Astral treats key-press and mouse-click 
as special events in that they combine operations for pressing 
(down) and releasing (up) to facilitate these common opera-
tions.  Mouse/key down and up events only trigger the single 
event when the source sensor value enters the selected range. 

Easing Functions. When mapping continuous device sensor 
input to desktop inputs, Astral allows designers to apply eas-
ing functions [51]. A rule defines a range as a source selec-
tion (e.g. accelerometer’s low and high values) and a desti-
nation selection (e.g. mouse coordinates).  

The authoring process is dynamic: designers can immedi-
ately view, test and modify rules as they author or edit them. 
If they want to stop the rule from running (e.g. because the 
mobile device input is taking over the mouse cursor), they 
can press the ‘escape’ key to pause or play the live mapping. 
When the designer is finished, they can name the rule and 
add it to the active ruleset in the main window. 

Merging Several Rules into Rulesets 
A behaviour may often require several rules, potentially us-
ing different sensors. Astral adds an additional layer of ab-
straction, rulesets, to support combining rules. If a ruleset is 
active, rules within that set will execute as long as the mobile 
device streams sensor data. This can be paused with the 
play/pause button, or by pressing the ‘escape’ key.  

To test variations of interactive behaviours, designers can 
create multiple rulesets and switch between them at any time. 
When there is an active ruleset, a newly created rule will be 
added to that set and stacked vertically. 

Deciding When Rules are Triggered 
Rules are a minimal unit of mapping a source to a destination 
input, thus supporting further re-combinations. Additional 
structures can expand ruleset expressiveness. 

Conditional (When). When a device input either meets a 
condition (e.g. values within a selected range), rules inside a 
conditional structure are activated. Conditional structures are 
always listening for input, and as long as the condition (or its 
negation) is met, all contained rules will execute. Thus, one 
can implement techniques such as the clutch mechanism in 
tilt-to-zoom [24] by nesting two conditionals (i.e. once the 
conditions of touch is down and not touch move are met, it is 
possible to interactively map accelerometer Y data from the 
device to mouse scroll up/down desktop input). 

Sequence (Next). A sequence defines a chain of rule transi-
tions (e.g. moving between different interface screens, forc-
ing order between rules). After a rule in a sequence is exe-
cuted, it becomes inactive and the following rule becomes 
active. Each rule in a sequence can mirror different portions 
of the desktop screen. Through sequence structures, Astral 
can approximate state-based approaches (as done by e.g. In-
Vision) without explicitly implementing states.  

Medley. A medley switches the currently active ruleset to the 
next when a device input meets a condition. Designers can 
define a single medley at a time. The idea behind medley 
rules is to quickly switch to and thus test different variations 
of a prototype as part of getting the right design [16].  
Sensor Selector 
We previously mentioned that Astral allows designers to dis-
ambiguate between multiple sensors. The Sensor Selector 
provides an overview of values from all available sensors as 
stacked line charts (Figure 4). By pressing the record button, 
the system records a webcam view that is synchronized with 
the different sensor data. Designers can go through the feed 
and see both video of the performed action and a visualiza-
tion of the corresponding sensor data. Designers can then 
scrub with the mouse to select the area of interest at which 
the desired action takes place. From that selection, designers 
can see all sensors that reacted, and select a specific sensor 
to create a rule. The system will open the Rule Editor with 
the sensor and its recorded ranges already selected. Having 
all sensors displayed together with the webcam view can 
help designers select the relevant sensor to use. 

USAGE SCENARIO: CREATING A LEVEL 
To demonstrate how a designer might work with Astral to 
author an interactive behaviour, we describe a simple sce-
nario. A designer aims to create a level (akin to a carpenter’s 
level) on a phone (Figure 5). In the interface, a bubble is cen-
tered on the screen when the phone is level and moves to 
corresponding sides when not level. Prototyping this type of 
nuanced interactive behaviour at this fidelity would ordinar-
ily require extensive programming. In this scenario, we 
showcase how Adobe Illustrator and AfterEffects – familiar 
image and video applications to a designer [39] – can realize 
nuanced behaviours. Below, and in our video figure, we il-
lustrate our scenario and note the duration of each step. 

Step 0: Illustrator and AfterEffects 
The designer first uses Adobe Illustrator to create a level il-
lustration, where the “bubble” is extracted as a separate layer 
that can be masked and animated (15 minutes). The designer 

 
Figure 5. Level prototype. Designers can create a custom map-
ping of a phone’s acceleration values to a mouse move event 
which scrubs through an Adobe AfterEffects Timeline. 



then imports the Illustrator file into Adobe AfterEffects and 
creates a simple linear animation in which the bubble moves 
from one end of the level to the other as the video progresses 
through its timeline (7 minutes). At this point, the designer 
has a video prototype that can describe what happens, but not 
how it happens. Astral is needed to transform this desktop 
video into an interactive prototype on the mobile device. 

Step 1: Starting Astral 
The designer launches Astral on the desktop (Figure 2a) and 
connects the mobile device to it. The designer clicks the cam-
era icon to select a region of the desktop to mirror onto the 
device. The designer selects the output video in the AfterEf-
fects window, which appears live on the device (1 minute).  

Step 2: Sensor Selector 
The designer wants the interaction to play out when tilting 
the phone from side to side in a portrait orientation. Unsure 
of which sensor might be used for this, the designer opens 
the Sensor Selector (Figure 4) and records all available sen-
sor values. The designer holds the device in view of the 
webcam and tilts the device side to side (2 minutes). The de-
signer then plays back the video and sensor recording, to nar-
row down what happens as the device motion takes place. 
They find that Linear Acceleration X and Linear Accelera-
tion Y both react to tilts, but that Linear Acceleration Y also 
triggers when tilting the device forward and back. The de-
signer right clicks on Linear Acceleration X and clicks on the 
“Create Rule” option, which opens the rule editor (1 minute). 

Step 3: Rule Editor 
The Rule Editor (Figure 2b) automatically selects Linear Ac-
celerometer X as its active sensor parameter, and already has 
a defined range based on the readings from the Sensor Selec-
tor. The designer repeats the desired behavior (side to side 
motion) to adjust the acceleration range (1 minute).  
Step 4: Mapping Mouse Coordinates to the AfterEffects 
Timeline 
The designer now uses input remapping to specify how the 
interaction takes place: moving the device from side to side 
is remapped to mouse actions that scrub through the video 
timeline so that the level’s bubble reacts accordingly. The 
designer creates a mapping by clicking on ‘Mouse’ and se-
lecting the move event. The designer next defines a mapping 
area which they assign to a rectangle overlaying the AfterEf-
fects Timeline and ticks the checkbox so that the mouse per-
forms a mouse down (holding) whenever the move event 
takes place. Because of the immediate preview, moving the 
phone already causes the mouse to move (which can be acti-
vated or deactivated from anywhere in the operating system 
using the escape key). As the prototype is already interactive 
via its live preview, the designer immediately sees the effects 
(both input and output) in the mobile device (2 minutes).  
Step 5: Fine-Tuning through Easing Functions 
When the interaction is tested, the designer might find that it 
does not respond as desired, as it is very easy for the level to 
go quickly from one side to another. One way to mitigate this 
is through an inverse cubic-in-out easing – which would slow 

down the animation towards the middle of the timeline, and 
speed up the animation towards the edges of the timeline, 
making the bubble remain level for longer. The designer can 
try different easing functions provided by Astral to balance a 
correct indication of when the level suggests it is level with 
a reaction that feels engaging (it only takes a few seconds to 
apply an easing function). Through easing, the designer is 
able to fine-tune the animation qualities of the interaction. 
This can take as long as the designer wishes to fine-tune the 
interaction. The designer may also decide to readjust the in-
put parameters or the mouse region for further fine-tuning. 

PROTOTYPES AND INTERACTION SCENARIOS 
We implemented a series of novel and replicated prototypes 
using Astral, which help convey Astral’s threshold, ceiling, 
and expressiveness [48] and show how Astral might support 
different interaction design tasks. These scenarios show 
some of the ways in which applications might be repurposed. 
Video-Based Prototyping 
Both our own experiences and past literature have shown de-
signers’ inclination towards working with high-fidelity video 
to convey prototype ideas to developers [39, 63, 64]. While 
video can show state-based animations, it does not show how 
interaction affects the timing of these animations as continu-
ous inputs are taking place. With Astral, designers can map 
sensors to mouse events that scrub through portions of the 
timeline in their preferred video editor. With this approach, 
skilled designers can achieve rich visuals with detailed ef-
fects (e.g. changing size and shape of the level’s bubble as it 
moves) which would otherwise be quite complex to program. 

Level Mobile Phone App. The level was described in the us-
age scenario section. With the level prototype, we emphasize 
(1) how the Sensor Selector can help designers determine 
which sensor corresponds to an action (in this case determin-
ing tilt by acceleration); and (2) the power of easing func-
tions to change the ‘feel’ [49] of an interactive behaviour.  

Compass. We created a simple animation of a compass nee-
dle rotating 360 degrees, including a separately-animated 
needle shadow that creates a three-dimensional effect when 
in motion. We mapped the angle of the device’s compass 
sensor to the position on the video timeline. 

Quick Settings. The Android Quick Settings menu contains 
a nuanced animation where multiple icons change size, posi-
tion, and opacity, to reveal available operating system func-
tions to a mobile user. With Astral, we are able to map a 
downward sliding gesture to progressively reveal controls. 
Furthermore, we can add an additional interaction of control-
ling the screen brightness by mapping a side swipe on the top 
of the screen to another portion of the timeline in which the 
screen fades to black. This shows how even within video 
timelines Astral can support multiple interactions. 
Authoring Open-Ended Interaction Techniques 
With Astral, it is also possible to prototype interaction tech-
niques that provide more open-ended ways of interaction 
than the video-based prototypes. 



Tilt to Move. We used Astral to create a one-handed map 
navigation by mapping the different tilt directions from a 
phone’s accelerometer data to the cardinal arrow keys in 
Google Maps. The rules are set so that key commands are 
triggered when the acceleration crosses a certain range (x: 4 
to 7 triggers right, x: -4 to -7 triggers left, y: 4 to 7 triggers 
down, y: -4 to -7 triggers up). Because Astral is using a key-
press event, the mapping initiates a key down when the ac-
celerometer enters the specified range, and a key up when 
leaving the range. This scenario replicates an example from 
d.tools [23] that originally required programming to realize 
the tilt-based map navigation. In contrast, the Astral version 
leverages input remapping and avoids the need to write code. 

Tilt to Zoom. We implemented tilt-to-zoom [24], where a de-
signer can both pan through a map using touch, and zoom in 
and out via tilting provided that there is also a touch down 
event (their finger acts as a clutch). This is achieved using 
conditional constructs. A touch down conditional becomes 
active if touch is down on the device. It contains another 
nested condition that checks whether touch move is not tak-
ing place. The rule within this nested conditional maps the 
accelerometer’s y-dimension to mouse scrolling (up or 
down). This prototype replicates an example from Hinckley 
et al. [24], incorporating the concept of motion in touch – 
mapping more than one sensor to a single function. 
Prototyping Multiple Alternatives 
Astral supports the exploration of different design solutions 
(getting the right design [16]). This motivated our medley 
rule which switches between active rulesets. Designers can 
sequentially test a set of prototype alternatives. Astral can 
thus support experimentation with any variation within rules, 
including sensors, thresholds, easings, or desktop inputs. 

Input Variations in a Mobile Game. The mobile platformer 
game Flappy Bird features a bird that flaps its wings when 
tapping the screen with the goal of making the bird fly 
through pipes. A web version (http://flappybird.io) allows 
players to use the spacebar, a mouse, or touch if using a 
touch-enabled device. Running the game on a desktop com-
puter, we mapped different mobile sensors to a spacebar key-
press (illustrated in Figure 1) so that the bird flaps when tap-
ping, when blowing onto the microphone, and when shaking. 
By creating a medley rule, we can quickly switch between 
active rulesets to explore different forms of interaction – in 
this case whenever the light sensor is covered. 

Iterative Prototyping at Multiple Fidelities  
Since Astral remaps inputs and supports mobile sensors to 
map to any key, we can work with multiple applications at 
different stages of the design process and support different 
tasks and specialized tools – wireframing and walkthroughs, 
transitions between states / flow (similar to d.tools [23]), or 
working with more sophisticated programming platforms 
that may not be available for mobile prototyping. To realize 
these examples, Astral mainly relies on sequences. 

Music Controller Sketches. Using a default image viewer, 
we can scan or photograph an interface sketch and immedi-
ately view it on the mobile device (Figure 6a). Designers can 
emulate states by chaining multiple rules with the sequence 
construct. Each rule moves the streamed region to different 
parts of the image (i.e. the screen drawings) depending on 
the tap interactions that may take place. By previewing the 
sketches on the target device – here a watch – designers can 
make early decisions such as defining correct button sizes. 

Music Controller PowerPoint Mock-up. Presentation soft-
ware such as PowerPoint and Keynote remain relevant for 
mocking up interfaces and wireframes [39, 63, 64]. With As-
tral, it is possible to use mock-ups created with these appli-
cations to show what seems like a button press on the watch 
(given the streamed visual) and move to another part of the 
slideshow by perform a click event on different parts of the 
slide thumbnail preview (Figure 6b). Thus, one can easily 
test the flow between different interface screens. 

HTML Prototype. Some designers are comfortable program-
ming HTML [63, 64]. They can map touch events one-to-one 
on a desktop browser window and test it on a smartwatch. 

Authoring Smart Object Behaviours 
Designers may also leverage Astral to explore behaviours on 
smart objects and appliances, as well as some degree of IoT. 
Using Soul-Body prototyping [32], designers can repurpose 
phones and watches in new and interesting ways. 

Smart Speaker Animations. Using video editing applica-
tions, one can author nuanced animated responses that a 
smart home speaker might perform. We created a smart 
speaker prototype by placing a smart watch inside a mug 
with a 3D printed tray and light diffuser (Figure 7a). Astral 
supports speech recognition through the built-in Microsoft 
speech API, so one could also explore different kinds of ani-
mations depending on different voice commands. 

3D Printed ‘Smart’ Level. We recreated the 3D-printed level 
from Pineal [32] by reusing the level mobile phone app pro-
totype from earlier in a smartwatch enclosed in a larger 3D 
print (Figure 7b). This shows how Astral can also adapt pro-
totypes to different devices and form factors.  
IMPLEMENTATION 
Astral is designed to work with one mobile device per desk-
top Astral client, which constrains and simplifies the work-
flow. This is tied to a technical limitation of desktops, as 
mouse and keyboard commands only can be sent to a single 

 
Figure 6. Astral supports the design process in all stages by al-
lowing (a) on-device rapid creation of interactive sketches, (b) 
using slideshows to transition between states. 

http://flappybird.ioa/


focused program. The desktop client of Astral is imple-
mented using C# and WPF, while the mobile applications are 
written in C# Xamarin to allow cross-platform mobile devel-
opment (iOS, Android, Android Wear). To reuse code and 
quickly adapt to newly added sensors of future devices, we 
developed all communication aspects in shared code, which 
uses the .NET Standard 2.0 (see below for details). 

Device Modules. We created classes in shared code for each 
of the mobile device’s features (e.g. accelerometer, micro-
phone, or display), which we call device modules. The mo-
bile device instantiates all modules it is equipped with when 
the application starts. Once the device connects to the Astral 
desktop, it sends a list of all available modules to the desktop. 
The desktop then creates the same modules to access the sen-
sors by proxy, as if they were local sensors. Each module 
updates its values with newly measured sensor data. Modules 
trigger an event in code once values have been updated. 

Data Exchange between Devices. Because the desktop and 
the client are not running on the same machine, device mod-
ules handle the internal network communication. For sensor 
data coming from the mobile device, this works as follows: 
(1) the mobile device records the respective sensor data na-
tively (i.e. iOS or Android specific); (2) it then updates the 
module using a device-independent abstraction of the meas-
ured data (e.g. three floating-point numbers for the accel-
erometer); (3) the module sends this data as bytes (using a 
unique identifier) over the network; (4) the module on the 
desktop unpacks the message and triggers an event; (5) if the 
Astral desktop client subscribes to the event, it receives the 
sensor data, and sends the update to rules using that sensor. 

Mirroring desktop contents works similarly, except that the 
desktop client updates the display device module. To speed 
up the transmission of images, we detect changes through 
image differencing, compress the areas that changed (JPEG), 
and only transmit these image patches. 

Performance. We use wireless LAN via TCP for connectiv-
ity between devices. We tested Astral on multiple phones 
(Nexus 5 and 5X, iPhones 6, 7 and 8, Pixel 2) and one smart-
watch (Sony Smartwatch 3). Image transmission is at inter-
active framerates – 50 fps on iOS, 25 fps on Android. This is 
concurrent with mobile sensor data streaming to the desktop, 
yet only if the desktop actually requires a specific sensor (i.e., 
a Rule or the Sensor Viewer is using that sensor). We stream 
sensor data in real-time but we restrict the rate to 100 fps to 
ensure high transmission rates in both directions. During 
testing and creation of our prototypes, we did not experience 
significant delays transferring data from multiple sensors. 
DISCUSSION 
In the process of creating Astral, we found much room for 
critical reflection, both in terms of the extent to which we 
achieved our goals, and limitations we tried to address. 

Astral and Designers 
In creating Astral, we wanted to provide designers with more 
ways to express interactive behaviours – supporting the use 

of sensors and physical actions, and providing a means to 
create smooth, reactive outputs. In that sense, these are new 
activities that designers may not have the means to, or not 
frequently need to perform today in their everyday jobs, but 
we are seeing systems increasingly using these types of be-
haviours (e.g. Android Quick Settings, Slide to Unlock). We 
also see these fluid behaviours in many emerging interactive 
devices (e.g. smart speakers), with a lack of tools to facilitate 
prototyping these behaviours. Such fluid behaviours are im-
portant, as they help people understand what their products 
are doing, might do, or have done [62], and communicate 
that the product has been designed with care [55]. 

Target Audience 
As we designed Astral, we kept in mind that our target audi-
ence will likely not have a strong technical background, as 
suggested by prior work [39, 49, 63, 64] and our experience. 
Our prototypes reflect a variety of interaction design tasks, 
some featuring very novel applications. We also carefully 
thought about expressive match [50]: tailoring visualizations 
to particular mobile sensor data, creating rules and simplify-
ing mappings to keyboard and mouse events. We free design-
ers from thinking about the nature of inputs by removing the 
distinction between discrete and continuous values. 
State Models 
Astral is not intended to replace existing prototyping soft-
ware, but to instead provide an alternative approach. State 
models are a common prototyping strategy, as they can quite 
intuitively describe the flow of the interaction. In providing 
paths of least resistance [48], we approximated this state-
based approach through the sequence structure and by lever-
aging features in applications that can emulate states (e.g. 
mapping behaviour to different slides in PowerPoint or to 
portions of a video timeline). While state models support 
more complex state-based applications, they lack support for 
authoring detailed dynamic aspects of user interface behav-
iour, instead favouring a trigger-action interaction model. An 
interesting idea for future work would be to combine state 
models with our input remapping and easing functions in As-
tral. This would enable more complex states while still facil-
itating prototyping the ‘feel’ aspects of interactive behaviour. 

Figure 7. Our Soul–Body Prototypes working with Astral: 
(a) Smart Speaker, prototyped by 3D printing a watch tray and 
light diffuser fitted inside a travel mug; (b) 3D Printed ‘Smart’ 
Level that reuses our phone app on an enclosed smartwatch. 



Expressive Leverage and Flexibility 
Astral allows designers to quickly get started (threshold) and 
achieve fairly expressive results (ceiling). However, we only 
examined a small subset of the range of interaction possibil-
ities with these types of inputs and this type of tool. When 
leveraging mouse events, the desktop tool needs interactive 
regions that are visible in the windows’ viewports to be a vi-
able target for input remapping. For example, one might nav-
igate between PowerPoint slides on the thumbnail view, or 
by playing the slideshow, but it is not possible to go to a spe-
cific slide without a macro.  

In spite of the limitations of mouse and keyboard events, us-
ing Astral on top of an existing tool empowers designers to 
repurposing the underlying desktop tool in new ways. In that 
sense, Astral augments existing tools with new paths of least 
resistance [48]. For example, the video prototype becomes 
interactive thanks to Adobe Premiere’s timeline and live pre-
view – Astral provides a means to define how the mobile 
sensors can manipulate the timeline and the preview to re-
purpose Premiere for testing continuous behaviours.  

Overcoming ‘Input Locks’ 
In a few cases, we observed issues with input locks when 
using Astral. Once a mouse move event is selected, the 
mouse starts reacting to the incoming sensor data. It some-
times became impossible to move the cursor with the physi-
cal mouse. To preserve the ability to test behaviours live as 
they are authored, we remedied this by adding a toggle with 
the ‘escape’ key to enable or disable the live preview. 

Device Relativism and Saving Prototypes 
Mappings of mouse and screen coordinates may not carry 
across different computers with different resolutions. One 
way to address this is to use device coordinates. Another po-
tential concern is that window sizes are not fixed, so once the 
workspace has changed the mappings may no longer work. 
There are workarounds to the latter concern: it is possible to 
store the position and sizes of the windows and associate 
them to the rules, so that when a ruleset executes it adjusts 
the window sizes. Mobile phones and smartwatches also 
have a wide variation within their resolutions and sensors. 
Additionally, some sensors may not be available on each de-
vice, and some sensors may have device-specific readings.  
One possible extension to allow designers to resume their 
work is for Astral is to record and store the rules, mirrored 
screen and sensor values. This can further scale to work 
across different mobile devices (resolutions and sensor 
ranges) to support sharing and testing of prototypes. 

Evaluation Approach 
There are various strategies for evaluating toolkits [34]. Of 
these, we use evaluation by demonstration as our primary 
method. Our prototypes represent both novel and replicated 
systems from past research [23, 24, 32, 46, 58, 59] – which 
reflect how Astral can achieve results that might be difficult 
to create otherwise, as well as ensuring prior paths of least 

resistance [48] can still be accommodated. Our usage sce-
nario provides a perspective on how designers might work 
with Astral while conveying some of its threshold and ceil-
ing [48]. We benchmarked the performance of the image 
transfer, which reached up to 25 fps on Android, and 50 fps 
on iOS. Finally, in this discussion, we took a reflective stance 
guided by prior lessons by Olsen [50] and Myers et al. [48]. 

We deliberately did not pursue a lab usability study. A usa-
bility evaluation would be inappropriate given that Astral is 
not a walk-up and use system and the paths of interaction are 
very open-ended [50]. Furthermore, a lab study would sacri-
fice realism [41]. First, designers each have different appli-
cations and computer setups which cannot be reflected in a 
lab setting. Second, Astral provides an alternative way to 
think about prototyping, which requires time to internalize. 
Finally, short tasks can lead to the usability trap [50], or test 
tasks we know Astral can succeed at, thus leading to unfair 
comparisons or weak generalizations from the current imple-
mentation rather than the concept as a whole [14]. Open-
ended tasks would require designers to envision ideas ahead 
of time (thus requiring an understanding of what Astral can 
do) – it would be unreasonable to request a design on the 
spot. An observational field study is beyond the scope of this 
paper, but would help us understand how Astral’s workflow 
fits interaction designers and affects what they can create, 
and how designers evolve their use of familiar applications 
over time to exploit Astral’s capabilities. 
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CONCLUSION 
We presented Astral, a prototyping tool that addresses chal-
lenges in interactive behaviour design. By (1) mirroring con-
tents from a desktop display, (2) streaming sensor data from 
a mobile device, and (3) allowing designers to map mobile 
sensors to mouse and keyboard events, a designer can choose 
a familiar desktop application to author mobile and smart ob-
ject interactions. Through Astral, we provide visualizations 
to help designers make sense of mobile data where multiple 
sensors are feeding data at the same time. From it, they can 
explore, author and fine-tune dynamic behaviours (both as 
input happens, as well as once inputs happen). Finally, by 
leveraging mouse and keyboard events, designers can use or 
repurpose any familiar desktop application and have it read-
ily available for live prototyping, thus multiplying the num-
ber of tools at designers’ disposal. We demonstrated Astral’s 
potential and workflow through a series of prototypes which 
encompass common interaction design activities as informed 
by prior explorations [39, 49, 63, 64] and our experience. We 
hope our initial exploration can propel designers’ conversa-
tions around interactive behaviour and lower the challenges 
of transitioning from design to implementation.
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