
Astral: Prototyping Mobile and Smart Object Interactive
Behaviours Using Familiar Applications

David Ledo1, Jo Vermeulen2, Sheelagh Carpendale1,
Saul Greenberg1, Lora Oehlberg1, Sebastian Boring3

1 Department of Computer Science, University of Calgary, Canada · {first.last}@ucalgary.ca
2 Department of Computer Science, Aarhus University, Denmark · jo.vermeulen@cs.au.dk

3 Department of Computer Science, University of Copenhagen, Denmark · sebastian.boring@di.ku.dk

ABSTRACT
Astral is a prototyping tool for authoring mobile and smart
object interactive behaviours. It mirrors selected display con-
tents of desktop applications onto mobile devices
(smartphones and smartwatches), and streams/remaps mo-
bile sensor data to desktop input events (mouse or keyboard)
to manipulate selected desktop contents. This allows design-
ers to use familiar desktop applications (e.g. PowerPoint, Af-
terEffects) to prototype rich interactive behaviours. Astral
combines and integrates display mirroring, sensor streaming
and input remapping, where designers can exploit familiar
desktop applications to prototype, explore and fine-tune dy-
namic interactive behaviours. With Astral, designers can vis-
ually author rules to test real-time behaviours while interac-
tions take place, as well as after the interaction has occurred.
We demonstrate Astral’s applicability, workflow and expres-
siveness within the interaction design process through both
new examples and replication of prior approaches that illus-
trate how various familiar desktop applications are leveraged
and repurposed.

Author Keywords
Prototyping; design tool; interactive behaviour; smart ob-
jects; mobile interfaces.

CCS Concepts
• Human-centered computing → Interface design proto-
typing; User interface toolkits
INTRODUCTION
Smart interactive devices such as mobile devices, wearables
and smart objects vary widely in input and output, physical
form, and development platforms. When prototyping inter-
active behaviors for these devices, designers are faced with
two options. The first option is to build prototypes directly
on the target device or platform. This involves programming

and, in some cases, circuit building or soldering (when pro-
totyping in physical computing). As a result, implementation
details consume the majority of designers’ time and re-
sources (e.g., code setup, learning the platform, program-
ming basic visuals), instead of important early-stage design
decisions such as exploring alternative solutions or defining
elements of animation and interaction [13]. The alternative
option is to explore a device’s interaction via desktop-based
prototyping tools (e.g. InVision). However, such prototyping
tools often specialize in specific tasks (e.g. wireframing,
standard UI widgets, creating animations as videos) without
room for integrating different workflows [39]. Furthermore,
while some tools support deploying prototypes on mobile de-
vices, they often do not support live sensor input other than
touch events on simple trigger action states. This limits de-
signers’ ability to envision how the interaction might play out
on the target device [25]. Exploring and fine-tuning respon-
sive behaviours is crucial for interactions that (1) go beyond
standard UI patterns on mobile platforms; (2) involve the tar-
get device’s physical form or possible physical actions (e.g.
shaking the device); and (3) contain nuanced continuous an-
imations that play out as the inputs are happening (e.g. slide
to unlock). In these situations, designers should be able to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DIS '19, June 23–28, 2019, San Diego, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5850-7/19/06 $15.00
https://doi.org/10.1145/3322276.3322329

Figure 1. Astral allows designers to prototype interactive behav-
iours by (1) mirroring contents of a desktop region to a mobile
device, (2) streaming mobile sensor data to the desktop, and
(3) remapping the sensor data into desktop input (e.g. mouse and
keyboard events) on a designer-chosen desktop application.

mailto:%7bfirst.last%7d@ucalgary.ca
mailto:jo.vermeulen@cs.au.dk
mailto:sebastian.boring@di.ku.dk
mailto:Permissions@acm.org
https://doi.org/10.1145/3322276.3322329

explore the dynamic interplay between inputs and outputs as
interaction happens. We aim to empower designers to envi-
sion these responsive behaviours in their prototypes, a pro-
cess that is currently not facilitated by existing tools in re-
search and industry.

ASTRAL
We introduce Astral (Figure 1 & video figure), a prototyping
tool that uses mirroring, streaming and input remapping via
simple rules to enable designers to author, test, and fine-tune
interactive behaviour in mobile devices using familiar appli-
cations. We achieve this through the following three steps:

1. Mirroring Desktop Visual Content to a Mobile Display.
Astral consists of a desktop client and a mobile client appli-
cation. As shown in Figure 1.1, the designer selects a region
(here a web browser running Flappy Bird) to mirror it to a
connected mobile (phone or watch) display. The mobile dis-
play is then updated live as the desktop display refreshes.

2. Streaming Mobile Sensor Data to Provide Input. As
shown in Figure 1.2, a designer can select data from multiple
types of sensors, such as touch, acceleration, ambient light or
the microphone. In this case, the designer enables the touch
sensor to be streamed back to the Astral desktop client. Every
time the designer now taps the mobile display, the touch lo-
cation is visualized on the Astral desktop client.

3. Interactivity via Input Remapping. As shown in Fig-
ure 1.3, the designer can provide interactivity to the mirrored
display by remapping the mobile sensor data to desktop key-
board or mouse inputs. Here, by remapping a mobile touch
down event to a desktop spacebar keypress, the bird in the
mirrored web browser can flap its wings. The designer can
visually select the entire screen of the phone to sense touch
events. Designers now have a greater range of expressive-
ness: they can prototype and fine-tune interactive behav-
iours, such as continuous and discrete actions, apply interac-
tive animation easing functions, or emulate states.

While we primarily focus on mobile interactions, Astral’s
building blocks and workflow also translate to prototyping
smart object behaviours. Instead of challenging designers to
solder, create custom circuitry and program electronics [5],
our mobile focus by extension allows designers to place mo-
bile devices into a fabricated shell and repurpose their inputs
and outputs (e.g. as shown in Soul–Body Prototyping [32],
Nintendo Labo [68], Sauron [56], AMI [57]) and continue
working with familiar desktop applications.
Benefits and Contributions
Astral is informed directly by (1) prior formative studies [39,
49, 63, 64]; (2) state of the art tools in research and industry;
and (3) our experiences talking to designers, teaching inter-
action design to designers and computer scientists, and cre-
ating prototyping tools and toolkits for behaviour authoring.
Astral makes the following contributions:

1. Enabling Designers to Leverage and Repurpose Famil-
iar Applications to Prototype Interactive Behaviours. As-
tral combines and integrates display mirroring, sensor
streaming and input remapping, where designers can exploit
desktop applications (e.g. PowerPoint, AfterEffects,
Chrome) [39, 63, 64] in a novel manner for prototyping in-
teractive behaviours. Because any desktop application can be
mirrored via Astral, any sensor data can be remapped to the
mouse and keyboard events understood by that desktop ap-
plication. Astral facilitates a tight design-test-refine cycle on
target devices without needing to write code through encap-
sulation of sensor data and mappings into rules, and imme-
diate interactive preview. Astral is designed to support vari-
ous interaction design practices (getting the right de-
sign [16]), including: video-based prototyping, prototyping
multiple alternatives, iterative prototyping, and smart object
prototyping (by placing mobile devices into physical forms
[32, 56, 57, 68]).

2. Allowing Designers to Visually Author Dynamic Inter-
actions Based on Continuous Sensor Data. The common
state model approach (e.g. d.tools [23], Adobe XD, inVision)
does not lend itself well to dynamic visuals and fine-tuned
temporal aspects of user interface behaviour. By working
with and visualizing continuous streams of sensor data, and
mapping (and easing) these to continuous outputs, our work
enables authoring “user-in-the-loop behaviours, where con-
tinuous user input drives the behaviour” [21, pp. 31] without
coding. This goes beyond prior prototyping tools (e.g. Exem-
plar [22]) that focus on supporting designers in authoring in-
teractive behaviours based on discrete events extracted from
continuous sensor data [21, pp. 99]. Moreover, Astral’s con-
tinuous behaviours focus on how the input becomes animated
as output while the action takes place.

RELATED WORK AND GOALS
The goal of our prototyping tool is to author nuanced inter-
active behaviour on mobile devices. In this paper, we con-
sider ‘interactive behaviour’ as the ‘feel’ of a prototype [49]
that cannot be easily conveyed through a physical sketch and
tends to require programming. ‘Feel’ emerges from not only
the outputs once interactions happen, but also as interactions
happen – a dynamic interplay discussed in past work on pro-
gressive feedback [62] and animation applications [18, 19].

We situate our research among extensive prior work on
toolkits and prototyping tools that help interaction designers
define interactive behavior. The specific approach of our
prototyping tool leverages and extends past work on stream-
ing sensor inputs, mirroring display outputs, and remapping
inputs across devices. Based on previous work, we identify a
series of Design Goals (DG) for Astral.

Prototyping Tools
We draw heavily on prior work in prototyping tools where
designers can quickly customize interactive behaviours (e.g.
Adobe Flash [65]) and work with sensor input (e.g. Exem-
plar [22]), while leveraging existing applications (e.g. Ma-
Key MaKey [4]), thus reducing the need to program. Astral

shares many goals of Programming by Demonstration ap-
proaches, including Exemplar [22], Improv [8], Gesture
Morpher [54], Topaz [45], and SugiLite [36]. Unlike these
approaches, however, Astral’s emphasis is not on recogni-
tion of actions and generalization from examples, but on
providing designers with a means for open-ended authoring
of continuous behaviours.

Mobile Prototyping
Fast prototyping not only relies on expressiveness, but also
how quickly designers can preview and evaluate designs.
Many interface prototyping tools feature live prototyping to
help designers create interactive applications in both mobile
contexts [1, 42, 44, 53] and physical computing contexts [22,
23, 32]. Gummy Live [42] allows designers to create mobile
interfaces live and see them reflected in the mobile device
ready for modification. Similarly, de Sá et al. [53] created a
tool that transitions from sketches on the target mobile de-
vice to Wizard of Oz [29] and higher fidelity prototypes.
Thus, our first goal is to create a tool that prototypes live in-
teractive behavior on the target device (DG1). We further
support liveness by running rules in real-time, including live
previews as they are created.

Physical Prototyping
Mobile devices and smart objects often contain multiple sen-
sors, and designers often prototype behaviours based on sen-
sor data. In physical computing, authoring is channeled
through specialized hardware (e.g. [4, 15, 61, 67]). Ar-
duino [66] in particular allows embedding multiple sensors
into objects. The cost is that circuits and code exploiting the
raw sensor data must be built from scratch, which can be dif-
ficult for novices, and introduces more opportunities for
bugs [5]. Alternatively, designers can repurpose existing
sensors and simplify authoring via prescribed interpretations
for the sensor data [32, 56]. Exemplar [22] shows how visu-
alizations can help designers to make sense of sensor data.
Thus, our second goal is to provide an end-user interface
that allows designers to explore variations among mobile
sensors (DG2). We achieve this goal and extend prior work
by our use of visualizations. First, we use live visualizations
tailored to each sensor type. The sensor data can be manipu-
lated to select its values and parameters for mapping. Sec-
ond, a live visualization lists all sensor data, which is rec-
orded alongside a synchronized video capture. As described
later, these methods help increase expressive match [50].
Extending Existing Infrastructures
When working on top of existing infrastructures, toolkits can
leverage existing functionality to quickly explore new types
of interactions. Olsen [50] discusses how working with com-
mon infrastructures enables new technology combinations to
support new solutions. For example, when pen input behaves
as mouse input, mouse-based applications can now be used
with a pen as the input device. Many prototyping tools in the
research literature use this approach. Exemplar [22] and Ma-
Key MaKey [4] support remapping sensor input into mouse
and keyboard events. ICon is a toolkit and editor [10] to cre-
ate input-reconfigurable interactive applications.

More general-purpose tools look to augment existing desk-
top applications. For instance, Transmogrifiers [6] shows
how dynamic desktop content (e.g. images, websites, videos)
can be transformed on-the-fly to create free-form visualiza-
tions. Prefab [9] treats the desktop as a set of pixels, which
can be reverse-engineered to enable new behaviour imple-
mentations on top of already existing interfaces (e.g. Bubble
Cursor [17] on default menus). We extend the idea of work-
ing with the existing ecosystem of a desktop with its installed
software and the native infrastructure (i.e. keyboard and
mouse events). Instead of augmenting interaction with the
existing application (as in Prefab [9]), we repurpose applica-
tions to author the mobile interactions.

Some tools extend interaction across multiple devices (com-
mercial examples include TeamViewer [69] and VNC [52]).
Semantic Snarfing [47] showed how a mobile device could
act as a laser pointer to retrieve contents of a desktop. Myers
[46] also examined how mobile devices could act as addi-
tional inputs to PCs (e.g. as a number pad). These systems
stream mobile inputs (e.g. PDA pen events) to interact with
the target application. Screen mirroring has a long history in
HCI, dating back to systems such as Chameleon [12].
Gummy-Live [42] and D-Macs [43] leverage screen mirror-
ing so designers can bridge the desktop’s design environment
and working with the target device. Montage [35] superim-
poses digital animated sketches on top of video prototypes.
Virtual Projection [3] mirrors and augments a desktop’s con-
tent and provides additional interaction opportunities.
WinCuts [59] uses real-time image-based mirroring which
extends to multiple devices without support for input redi-
rection from the remote machines.

Building on these ideas of repurposing keyboard and mouse
events, streaming mobile input, and mirroring screen con-
tents, our third goal is to support the use of existing, familiar
applications for prototyping (DG3). Astral enables design-
ers to use their own workflows and remap sensor input (e.g.
accelerometer, touch events) into keyboard and mouse input
that can control any familiar desktop application to prototype
mobile interactions.

Continuous Animation
For designers to prototype interactive behaviors, they must
not only be able to see continuous live effects from their in-
put (DG1), but also examine and modify how those effects
take place atop familiar applications (DG3). Thus, Astral
needs to support continuous animation in direct response to
sensor changes as they occur (DG4) if it is to truly prototype
nuanced interactive behaviors. One way to achieve this is
through easings. Easing is a term used by Adobe Flash [65]
to refer to the slow-in and slow-out principle of animation
[60], in which the number of in-between frames are increased
or decreased at keyframes between poses to create the illu-
sion that an object is speeding up or slowing down. Adobe
Flash incorporated easings as a default linear tween that
could be applied to motion tweens. Penner [51] created
scripts for Flash to change the character of the easing through

mathematical functions. We leverage prior work that ani-
mates as a function of continuous sensor input (e.g. [2, 11,
38]) and extend Penner’s easing functions [51] – instead of
it being a function of time, they work as a function of contin-
uous input (e.g. as done in [7, 18, 33, 40]) and we support
their authoring as a way to fine-tune animations as continu-
ous sensor-based interactions happen. The easing functions
can produce aesthetic experiences, as well as more utilitarian
elements (e.g. balancing the sensitivity of an input’s effect).
These continuous animations with easing functions are not
explored in prior programming by demonstration ap-
proaches, which tend to favour recognition of discrete events
from continuous sensor inputs (e.g. [22]). Astral extends this
by authoring of interactive behaviour where continuous sen-
sor input drives continuous output without writing code.

To recapitulate, Astral extends previous approaches by com-
bining existing techniques of mirroring, streaming and re-
mapping to feed into new building blocks: the creation of
small, self-contained rules that drive a lively and animated
prototype. These rules allow repurposing of familiar desktop
applications in ways that have not been seen before.

WORKING WITH ASTRAL
The overarching idea behind Astral (as shown in Figure 1) is
to allow designers to quickly prototype interactive behav-
iours on mobile devices. To ensure that designers can use or

repurpose familiar desktop applications to author and test
mobile interactive behaviours (DG3), we designed Astral as
a desktop server that communicates with a client running on
designer’s target mobile device.

Main Interface
Once the mobile client connects to the desktop application,
the main view provides access to all of the functionality. We
next describe the different functions provided in the main in-
terface (Figure 2a), which are later addressed in more detail.

Mirror Desktop Contents. Designers can choose the region
of the desktop that should be mirrored to the mobile client.

Specify Input Remapping through Rules. Designers can au-
thor the intended interactive behaviour through the use of
rules and rulesets (see following sections).

Combine Rules into Rulesets. Active (authored) rules are
shown on the screen, which can be edited via double click-
ing. Rules are by default added to the currently active ruleset.

Visualize Sensor Data in the Sensor Selector. Designers can
view all mobile sensors concurrently together with a video
feed, record, playback and convert to rules.

Mirroring Desktop Contents
Clicking on the camera icon (Figure 2a), designers can mir-
ror display contents onto the connected mobile device. An

Figure 2. Annotated Astral Interface. (a) Main window streams content to mobile device and displays active rules; (b) When adding
rules, the interface shows an interactive visualization from which designers select the range of sensor values to for input remapping.

overlay region is shown, which the designer can move and
scale to mirror onto the mobile device. We expect this region
to typically contain the intended visual output created
through the designer’s preferred application. The selection
window contents are mirrored to the mobile client live.

Specifying Input Remapping through Rules
Once content is streamed to the mobile device, designers can
author an interactive behaviour by defining a rule. A rule is
a software abstraction that contains information as to how
mobile sensor data is mapped to keyboard and mouse events.
Each rule holds a sensor type, a range of values to which the
mobile data is compared, and a mapping. Mappings encap-
sulate a source (mobile sensor input) and a destination (desk-
top mouse or keyboard event). To create a rule, the designer
clicks on the ‘plus’ sign to open the Rule Editor – a guided
interface to author or edit an input remapping rule. A partic-
ular configuration example is shown in Figure 2b.

Selecting a Source: Sensor and Range of Values. The Rule
Editor shows a list of sensors provided by the mobile device.
A designer can choose the individual sensor of interest (Fig-
ure 2b side panel) to define the rule. Clicking on a sensor
icon reveals a live visualization of the sensor and its values
to help the designer understand (1) the particular sensor’s re-
sponse as the device is being manipulated (Figure 3), and
(2) whether the sensor is appropriate to use. The visualiza-
tion is tailored to the selected sensor (and its parameters/in-
dividual data) to provide higher expressive match [50]. In the
case of the accelerometer (Figure 2b), the designer can select
which parameter to observe (e.g. the x-dimension). They can
then constrain the sensor to a range of values (e.g. between
5 m/s2 and 5 m/s2). Sensor readings can be further trans-
formed by applying prepackaged filters (e.g. extracting grav-
ity and linear acceleration values from the acceleration).

Remapping the Source to a Destination Desktop Input. The
designer can now map the mobile device sensor and its range
of values to a desktop (mouse or keyboard) input, also con-
sisting of a type of input and a range of values. Astral then
interpolates between these two ranges of values. For exam-
ple, when mapping to a mouse-move event, the designer can
specify the destination range of pixel-coordinates by manip-
ulating a rectangular selection. For mouse wheel events, in-
puts map to a variable mouse wheel scrolling range, as shown
in Figure 2-B (Windows default scrolling: 120 pixels per
step). For keyboard events, designers can specify an event
(i.e. key down, key press, or key up) and the associated key
(e.g. arrow left, spacebar). Keys can be typed or selected
from a list of operating system defined keys (e.g. volume
controls, media playback). Through keyboard remapping,
the system can also trigger hotkeys to the active application.

We support discrete and continuous inputs (as categorized
by Exemplar [22]) through consistent abstractions. Design-
ers always select a range of values from the source input
(Figure 3), and map it to a range of values of a destination
mouse or keyboard event. The system automatically maps
the values from one range to the other. If a continuous sensor
(e.g. a range of values of the compass) is mapped to a con-
tinuous destination (e.g. a mouse-move with range of coor-
dinates), the values are interpolated (which can be further al-
tered via inversion or easing functions). In the case where
either source or destination inputs only provide two values,
the system still performs the interpolation. For example, a
proximity sensor (with values 0 or 1) mapped to a mouse-
move will only (abruptly) move to the beginning or end of
the range of mouse coordinates. In such a case, perhaps a
mapping to another input, such as a key-press might be more
sensible, as the mapping will be one-to-one, if the sensor
reads 1, the command for the key is pressed, otherwise the
key is released. On the other hand, if the sensor values are
continuous (e.g. range within accelerometer-x) and mapped
to a binary input (e.g. key-press), the key down is triggered

Figure 3. Astral provides interactive visualizations for different
sensors: (a) compass, (b) touchscreen, (c) ambient light. Se-
lected areas of interest are highlighted in yellow.

Figure 4. Astral’s Sensor Selector records sensor along with a
webcam video feed. A range of values can be selected (green) to
open the Rule Editor with the sensor and values predefined.

once the sensor value enters a selection range that is specified
by the designer (orange range in Figure 3-C), and releasing
via key up will be triggered once the sensor value exits that
selection. Note that Astral treats key-press and mouse-click
as special events in that they combine operations for pressing
(down) and releasing (up) to facilitate these common opera-
tions. Mouse/key down and up events only trigger the single
event when the source sensor value enters the selected range.

Easing Functions. When mapping continuous device sensor
input to desktop inputs, Astral allows designers to apply eas-
ing functions [51]. A rule defines a range as a source selec-
tion (e.g. accelerometer’s low and high values) and a desti-
nation selection (e.g. mouse coordinates).

The authoring process is dynamic: designers can immedi-
ately view, test and modify rules as they author or edit them.
If they want to stop the rule from running (e.g. because the
mobile device input is taking over the mouse cursor), they
can press the ‘escape’ key to pause or play the live mapping.
When the designer is finished, they can name the rule and
add it to the active ruleset in the main window.

Merging Several Rules into Rulesets
A behaviour may often require several rules, potentially us-
ing different sensors. Astral adds an additional layer of ab-
straction, rulesets, to support combining rules. If a ruleset is
active, rules within that set will execute as long as the mobile
device streams sensor data. This can be paused with the
play/pause button, or by pressing the ‘escape’ key.

To test variations of interactive behaviours, designers can
create multiple rulesets and switch between them at any time.
When there is an active ruleset, a newly created rule will be
added to that set and stacked vertically.

Deciding When Rules are Triggered
Rules are a minimal unit of mapping a source to a destination
input, thus supporting further re-combinations. Additional
structures can expand ruleset expressiveness.

Conditional (When). When a device input either meets a
condition (e.g. values within a selected range), rules inside a
conditional structure are activated. Conditional structures are
always listening for input, and as long as the condition (or its
negation) is met, all contained rules will execute. Thus, one
can implement techniques such as the clutch mechanism in
tilt-to-zoom [24] by nesting two conditionals (i.e. once the
conditions of touch is down and not touch move are met, it is
possible to interactively map accelerometer Y data from the
device to mouse scroll up/down desktop input).

Sequence (Next). A sequence defines a chain of rule transi-
tions (e.g. moving between different interface screens, forc-
ing order between rules). After a rule in a sequence is exe-
cuted, it becomes inactive and the following rule becomes
active. Each rule in a sequence can mirror different portions
of the desktop screen. Through sequence structures, Astral
can approximate state-based approaches (as done by e.g. In-
Vision) without explicitly implementing states.

Medley. A medley switches the currently active ruleset to the
next when a device input meets a condition. Designers can
define a single medley at a time. The idea behind medley
rules is to quickly switch to and thus test different variations
of a prototype as part of getting the right design [16].
Sensor Selector
We previously mentioned that Astral allows designers to dis-
ambiguate between multiple sensors. The Sensor Selector
provides an overview of values from all available sensors as
stacked line charts (Figure 4). By pressing the record button,
the system records a webcam view that is synchronized with
the different sensor data. Designers can go through the feed
and see both video of the performed action and a visualiza-
tion of the corresponding sensor data. Designers can then
scrub with the mouse to select the area of interest at which
the desired action takes place. From that selection, designers
can see all sensors that reacted, and select a specific sensor
to create a rule. The system will open the Rule Editor with
the sensor and its recorded ranges already selected. Having
all sensors displayed together with the webcam view can
help designers select the relevant sensor to use.

USAGE SCENARIO: CREATING A LEVEL
To demonstrate how a designer might work with Astral to
author an interactive behaviour, we describe a simple sce-
nario. A designer aims to create a level (akin to a carpenter’s
level) on a phone (Figure 5). In the interface, a bubble is cen-
tered on the screen when the phone is level and moves to
corresponding sides when not level. Prototyping this type of
nuanced interactive behaviour at this fidelity would ordinar-
ily require extensive programming. In this scenario, we
showcase how Adobe Illustrator and AfterEffects – familiar
image and video applications to a designer [39] – can realize
nuanced behaviours. Below, and in our video figure, we il-
lustrate our scenario and note the duration of each step.

Step 0: Illustrator and AfterEffects
The designer first uses Adobe Illustrator to create a level il-
lustration, where the “bubble” is extracted as a separate layer
that can be masked and animated (15 minutes). The designer

Figure 5. Level prototype. Designers can create a custom map-
ping of a phone’s acceleration values to a mouse move event
which scrubs through an Adobe AfterEffects Timeline.

then imports the Illustrator file into Adobe AfterEffects and
creates a simple linear animation in which the bubble moves
from one end of the level to the other as the video progresses
through its timeline (7 minutes). At this point, the designer
has a video prototype that can describe what happens, but not
how it happens. Astral is needed to transform this desktop
video into an interactive prototype on the mobile device.

Step 1: Starting Astral
The designer launches Astral on the desktop (Figure 2a) and
connects the mobile device to it. The designer clicks the cam-
era icon to select a region of the desktop to mirror onto the
device. The designer selects the output video in the AfterEf-
fects window, which appears live on the device (1 minute).

Step 2: Sensor Selector
The designer wants the interaction to play out when tilting
the phone from side to side in a portrait orientation. Unsure
of which sensor might be used for this, the designer opens
the Sensor Selector (Figure 4) and records all available sen-
sor values. The designer holds the device in view of the
webcam and tilts the device side to side (2 minutes). The de-
signer then plays back the video and sensor recording, to nar-
row down what happens as the device motion takes place.
They find that Linear Acceleration X and Linear Accelera-
tion Y both react to tilts, but that Linear Acceleration Y also
triggers when tilting the device forward and back. The de-
signer right clicks on Linear Acceleration X and clicks on the
“Create Rule” option, which opens the rule editor (1 minute).

Step 3: Rule Editor
The Rule Editor (Figure 2b) automatically selects Linear Ac-
celerometer X as its active sensor parameter, and already has
a defined range based on the readings from the Sensor Selec-
tor. The designer repeats the desired behavior (side to side
motion) to adjust the acceleration range (1 minute).
Step 4: Mapping Mouse Coordinates to the AfterEffects
Timeline
The designer now uses input remapping to specify how the
interaction takes place: moving the device from side to side
is remapped to mouse actions that scrub through the video
timeline so that the level’s bubble reacts accordingly. The
designer creates a mapping by clicking on ‘Mouse’ and se-
lecting the move event. The designer next defines a mapping
area which they assign to a rectangle overlaying the AfterEf-
fects Timeline and ticks the checkbox so that the mouse per-
forms a mouse down (holding) whenever the move event
takes place. Because of the immediate preview, moving the
phone already causes the mouse to move (which can be acti-
vated or deactivated from anywhere in the operating system
using the escape key). As the prototype is already interactive
via its live preview, the designer immediately sees the effects
(both input and output) in the mobile device (2 minutes).
Step 5: Fine-Tuning through Easing Functions
When the interaction is tested, the designer might find that it
does not respond as desired, as it is very easy for the level to
go quickly from one side to another. One way to mitigate this
is through an inverse cubic-in-out easing – which would slow

down the animation towards the middle of the timeline, and
speed up the animation towards the edges of the timeline,
making the bubble remain level for longer. The designer can
try different easing functions provided by Astral to balance a
correct indication of when the level suggests it is level with
a reaction that feels engaging (it only takes a few seconds to
apply an easing function). Through easing, the designer is
able to fine-tune the animation qualities of the interaction.
This can take as long as the designer wishes to fine-tune the
interaction. The designer may also decide to readjust the in-
put parameters or the mouse region for further fine-tuning.

PROTOTYPES AND INTERACTION SCENARIOS
We implemented a series of novel and replicated prototypes
using Astral, which help convey Astral’s threshold, ceiling,
and expressiveness [48] and show how Astral might support
different interaction design tasks. These scenarios show
some of the ways in which applications might be repurposed.
Video-Based Prototyping
Both our own experiences and past literature have shown de-
signers’ inclination towards working with high-fidelity video
to convey prototype ideas to developers [39, 63, 64]. While
video can show state-based animations, it does not show how
interaction affects the timing of these animations as continu-
ous inputs are taking place. With Astral, designers can map
sensors to mouse events that scrub through portions of the
timeline in their preferred video editor. With this approach,
skilled designers can achieve rich visuals with detailed ef-
fects (e.g. changing size and shape of the level’s bubble as it
moves) which would otherwise be quite complex to program.

Level Mobile Phone App. The level was described in the us-
age scenario section. With the level prototype, we emphasize
(1) how the Sensor Selector can help designers determine
which sensor corresponds to an action (in this case determin-
ing tilt by acceleration); and (2) the power of easing func-
tions to change the ‘feel’ [49] of an interactive behaviour.

Compass. We created a simple animation of a compass nee-
dle rotating 360 degrees, including a separately-animated
needle shadow that creates a three-dimensional effect when
in motion. We mapped the angle of the device’s compass
sensor to the position on the video timeline.

Quick Settings. The Android Quick Settings menu contains
a nuanced animation where multiple icons change size, posi-
tion, and opacity, to reveal available operating system func-
tions to a mobile user. With Astral, we are able to map a
downward sliding gesture to progressively reveal controls.
Furthermore, we can add an additional interaction of control-
ling the screen brightness by mapping a side swipe on the top
of the screen to another portion of the timeline in which the
screen fades to black. This shows how even within video
timelines Astral can support multiple interactions.
Authoring Open-Ended Interaction Techniques
With Astral, it is also possible to prototype interaction tech-
niques that provide more open-ended ways of interaction
than the video-based prototypes.

Tilt to Move. We used Astral to create a one-handed map
navigation by mapping the different tilt directions from a
phone’s accelerometer data to the cardinal arrow keys in
Google Maps. The rules are set so that key commands are
triggered when the acceleration crosses a certain range (x: 4
to 7 triggers right, x: -4 to -7 triggers left, y: 4 to 7 triggers
down, y: -4 to -7 triggers up). Because Astral is using a key-
press event, the mapping initiates a key down when the ac-
celerometer enters the specified range, and a key up when
leaving the range. This scenario replicates an example from
d.tools [23] that originally required programming to realize
the tilt-based map navigation. In contrast, the Astral version
leverages input remapping and avoids the need to write code.

Tilt to Zoom. We implemented tilt-to-zoom [24], where a de-
signer can both pan through a map using touch, and zoom in
and out via tilting provided that there is also a touch down
event (their finger acts as a clutch). This is achieved using
conditional constructs. A touch down conditional becomes
active if touch is down on the device. It contains another
nested condition that checks whether touch move is not tak-
ing place. The rule within this nested conditional maps the
accelerometer’s y-dimension to mouse scrolling (up or
down). This prototype replicates an example from Hinckley
et al. [24], incorporating the concept of motion in touch –
mapping more than one sensor to a single function.
Prototyping Multiple Alternatives
Astral supports the exploration of different design solutions
(getting the right design [16]). This motivated our medley
rule which switches between active rulesets. Designers can
sequentially test a set of prototype alternatives. Astral can
thus support experimentation with any variation within rules,
including sensors, thresholds, easings, or desktop inputs.

Input Variations in a Mobile Game. The mobile platformer
game Flappy Bird features a bird that flaps its wings when
tapping the screen with the goal of making the bird fly
through pipes. A web version (http://flappybird.io) allows
players to use the spacebar, a mouse, or touch if using a
touch-enabled device. Running the game on a desktop com-
puter, we mapped different mobile sensors to a spacebar key-
press (illustrated in Figure 1) so that the bird flaps when tap-
ping, when blowing onto the microphone, and when shaking.
By creating a medley rule, we can quickly switch between
active rulesets to explore different forms of interaction – in
this case whenever the light sensor is covered.

Iterative Prototyping at Multiple Fidelities
Since Astral remaps inputs and supports mobile sensors to
map to any key, we can work with multiple applications at
different stages of the design process and support different
tasks and specialized tools – wireframing and walkthroughs,
transitions between states / flow (similar to d.tools [23]), or
working with more sophisticated programming platforms
that may not be available for mobile prototyping. To realize
these examples, Astral mainly relies on sequences.

Music Controller Sketches. Using a default image viewer,
we can scan or photograph an interface sketch and immedi-
ately view it on the mobile device (Figure 6a). Designers can
emulate states by chaining multiple rules with the sequence
construct. Each rule moves the streamed region to different
parts of the image (i.e. the screen drawings) depending on
the tap interactions that may take place. By previewing the
sketches on the target device – here a watch – designers can
make early decisions such as defining correct button sizes.

Music Controller PowerPoint Mock-up. Presentation soft-
ware such as PowerPoint and Keynote remain relevant for
mocking up interfaces and wireframes [39, 63, 64]. With As-
tral, it is possible to use mock-ups created with these appli-
cations to show what seems like a button press on the watch
(given the streamed visual) and move to another part of the
slideshow by perform a click event on different parts of the
slide thumbnail preview (Figure 6b). Thus, one can easily
test the flow between different interface screens.

HTML Prototype. Some designers are comfortable program-
ming HTML [63, 64]. They can map touch events one-to-one
on a desktop browser window and test it on a smartwatch.

Authoring Smart Object Behaviours
Designers may also leverage Astral to explore behaviours on
smart objects and appliances, as well as some degree of IoT.
Using Soul-Body prototyping [32], designers can repurpose
phones and watches in new and interesting ways.

Smart Speaker Animations. Using video editing applica-
tions, one can author nuanced animated responses that a
smart home speaker might perform. We created a smart
speaker prototype by placing a smart watch inside a mug
with a 3D printed tray and light diffuser (Figure 7a). Astral
supports speech recognition through the built-in Microsoft
speech API, so one could also explore different kinds of ani-
mations depending on different voice commands.

3D Printed ‘Smart’ Level. We recreated the 3D-printed level
from Pineal [32] by reusing the level mobile phone app pro-
totype from earlier in a smartwatch enclosed in a larger 3D
print (Figure 7b). This shows how Astral can also adapt pro-
totypes to different devices and form factors.
IMPLEMENTATION
Astral is designed to work with one mobile device per desk-
top Astral client, which constrains and simplifies the work-
flow. This is tied to a technical limitation of desktops, as
mouse and keyboard commands only can be sent to a single

Figure 6. Astral supports the design process in all stages by al-
lowing (a) on-device rapid creation of interactive sketches, (b)
using slideshows to transition between states.

http://flappybird.ioa/

focused program. The desktop client of Astral is imple-
mented using C# and WPF, while the mobile applications are
written in C# Xamarin to allow cross-platform mobile devel-
opment (iOS, Android, Android Wear). To reuse code and
quickly adapt to newly added sensors of future devices, we
developed all communication aspects in shared code, which
uses the .NET Standard 2.0 (see below for details).

Device Modules. We created classes in shared code for each
of the mobile device’s features (e.g. accelerometer, micro-
phone, or display), which we call device modules. The mo-
bile device instantiates all modules it is equipped with when
the application starts. Once the device connects to the Astral
desktop, it sends a list of all available modules to the desktop.
The desktop then creates the same modules to access the sen-
sors by proxy, as if they were local sensors. Each module
updates its values with newly measured sensor data. Modules
trigger an event in code once values have been updated.

Data Exchange between Devices. Because the desktop and
the client are not running on the same machine, device mod-
ules handle the internal network communication. For sensor
data coming from the mobile device, this works as follows:
(1) the mobile device records the respective sensor data na-
tively (i.e. iOS or Android specific); (2) it then updates the
module using a device-independent abstraction of the meas-
ured data (e.g. three floating-point numbers for the accel-
erometer); (3) the module sends this data as bytes (using a
unique identifier) over the network; (4) the module on the
desktop unpacks the message and triggers an event; (5) if the
Astral desktop client subscribes to the event, it receives the
sensor data, and sends the update to rules using that sensor.

Mirroring desktop contents works similarly, except that the
desktop client updates the display device module. To speed
up the transmission of images, we detect changes through
image differencing, compress the areas that changed (JPEG),
and only transmit these image patches.

Performance. We use wireless LAN via TCP for connectiv-
ity between devices. We tested Astral on multiple phones
(Nexus 5 and 5X, iPhones 6, 7 and 8, Pixel 2) and one smart-
watch (Sony Smartwatch 3). Image transmission is at inter-
active framerates – 50 fps on iOS, 25 fps on Android. This is
concurrent with mobile sensor data streaming to the desktop,
yet only if the desktop actually requires a specific sensor (i.e.,
a Rule or the Sensor Viewer is using that sensor). We stream
sensor data in real-time but we restrict the rate to 100 fps to
ensure high transmission rates in both directions. During
testing and creation of our prototypes, we did not experience
significant delays transferring data from multiple sensors.
DISCUSSION
In the process of creating Astral, we found much room for
critical reflection, both in terms of the extent to which we
achieved our goals, and limitations we tried to address.

Astral and Designers
In creating Astral, we wanted to provide designers with more
ways to express interactive behaviours – supporting the use

of sensors and physical actions, and providing a means to
create smooth, reactive outputs. In that sense, these are new
activities that designers may not have the means to, or not
frequently need to perform today in their everyday jobs, but
we are seeing systems increasingly using these types of be-
haviours (e.g. Android Quick Settings, Slide to Unlock). We
also see these fluid behaviours in many emerging interactive
devices (e.g. smart speakers), with a lack of tools to facilitate
prototyping these behaviours. Such fluid behaviours are im-
portant, as they help people understand what their products
are doing, might do, or have done [62], and communicate
that the product has been designed with care [55].

Target Audience
As we designed Astral, we kept in mind that our target audi-
ence will likely not have a strong technical background, as
suggested by prior work [39, 49, 63, 64] and our experience.
Our prototypes reflect a variety of interaction design tasks,
some featuring very novel applications. We also carefully
thought about expressive match [50]: tailoring visualizations
to particular mobile sensor data, creating rules and simplify-
ing mappings to keyboard and mouse events. We free design-
ers from thinking about the nature of inputs by removing the
distinction between discrete and continuous values.
State Models
Astral is not intended to replace existing prototyping soft-
ware, but to instead provide an alternative approach. State
models are a common prototyping strategy, as they can quite
intuitively describe the flow of the interaction. In providing
paths of least resistance [48], we approximated this state-
based approach through the sequence structure and by lever-
aging features in applications that can emulate states (e.g.
mapping behaviour to different slides in PowerPoint or to
portions of a video timeline). While state models support
more complex state-based applications, they lack support for
authoring detailed dynamic aspects of user interface behav-
iour, instead favouring a trigger-action interaction model. An
interesting idea for future work would be to combine state
models with our input remapping and easing functions in As-
tral. This would enable more complex states while still facil-
itating prototyping the ‘feel’ aspects of interactive behaviour.

Figure 7. Our Soul–Body Prototypes working with Astral:
(a) Smart Speaker, prototyped by 3D printing a watch tray and
light diffuser fitted inside a travel mug; (b) 3D Printed ‘Smart’
Level that reuses our phone app on an enclosed smartwatch.

Expressive Leverage and Flexibility
Astral allows designers to quickly get started (threshold) and
achieve fairly expressive results (ceiling). However, we only
examined a small subset of the range of interaction possibil-
ities with these types of inputs and this type of tool. When
leveraging mouse events, the desktop tool needs interactive
regions that are visible in the windows’ viewports to be a vi-
able target for input remapping. For example, one might nav-
igate between PowerPoint slides on the thumbnail view, or
by playing the slideshow, but it is not possible to go to a spe-
cific slide without a macro.

In spite of the limitations of mouse and keyboard events, us-
ing Astral on top of an existing tool empowers designers to
repurposing the underlying desktop tool in new ways. In that
sense, Astral augments existing tools with new paths of least
resistance [48]. For example, the video prototype becomes
interactive thanks to Adobe Premiere’s timeline and live pre-
view – Astral provides a means to define how the mobile
sensors can manipulate the timeline and the preview to re-
purpose Premiere for testing continuous behaviours.

Overcoming ‘Input Locks’
In a few cases, we observed issues with input locks when
using Astral. Once a mouse move event is selected, the
mouse starts reacting to the incoming sensor data. It some-
times became impossible to move the cursor with the physi-
cal mouse. To preserve the ability to test behaviours live as
they are authored, we remedied this by adding a toggle with
the ‘escape’ key to enable or disable the live preview.

Device Relativism and Saving Prototypes
Mappings of mouse and screen coordinates may not carry
across different computers with different resolutions. One
way to address this is to use device coordinates. Another po-
tential concern is that window sizes are not fixed, so once the
workspace has changed the mappings may no longer work.
There are workarounds to the latter concern: it is possible to
store the position and sizes of the windows and associate
them to the rules, so that when a ruleset executes it adjusts
the window sizes. Mobile phones and smartwatches also
have a wide variation within their resolutions and sensors.
Additionally, some sensors may not be available on each de-
vice, and some sensors may have device-specific readings.
One possible extension to allow designers to resume their
work is for Astral is to record and store the rules, mirrored
screen and sensor values. This can further scale to work
across different mobile devices (resolutions and sensor
ranges) to support sharing and testing of prototypes.

Evaluation Approach
There are various strategies for evaluating toolkits [34]. Of
these, we use evaluation by demonstration as our primary
method. Our prototypes represent both novel and replicated
systems from past research [23, 24, 32, 46, 58, 59] – which
reflect how Astral can achieve results that might be difficult
to create otherwise, as well as ensuring prior paths of least

resistance [48] can still be accommodated. Our usage sce-
nario provides a perspective on how designers might work
with Astral while conveying some of its threshold and ceil-
ing [48]. We benchmarked the performance of the image
transfer, which reached up to 25 fps on Android, and 50 fps
on iOS. Finally, in this discussion, we took a reflective stance
guided by prior lessons by Olsen [50] and Myers et al. [48].

We deliberately did not pursue a lab usability study. A usa-
bility evaluation would be inappropriate given that Astral is
not a walk-up and use system and the paths of interaction are
very open-ended [50]. Furthermore, a lab study would sacri-
fice realism [41]. First, designers each have different appli-
cations and computer setups which cannot be reflected in a
lab setting. Second, Astral provides an alternative way to
think about prototyping, which requires time to internalize.
Finally, short tasks can lead to the usability trap [50], or test
tasks we know Astral can succeed at, thus leading to unfair
comparisons or weak generalizations from the current imple-
mentation rather than the concept as a whole [14]. Open-
ended tasks would require designers to envision ideas ahead
of time (thus requiring an understanding of what Astral can
do) – it would be unreasonable to request a design on the
spot. An observational field study is beyond the scope of this
paper, but would help us understand how Astral’s workflow
fits interaction designers and affects what they can create,
and how designers evolve their use of familiar applications
over time to exploit Astral’s capabilities.

ACKNOWLEDGEMENTS
This research was supported by NSERC, NSERC PGS-D,
AITF, Smart Technologies, the Adobe Research Fellowship,
the Isaac Walton Killam Scholarship and the Office of the
Vice President (Research) at the University of Calgary.

CONCLUSION
We presented Astral, a prototyping tool that addresses chal-
lenges in interactive behaviour design. By (1) mirroring con-
tents from a desktop display, (2) streaming sensor data from
a mobile device, and (3) allowing designers to map mobile
sensors to mouse and keyboard events, a designer can choose
a familiar desktop application to author mobile and smart ob-
ject interactions. Through Astral, we provide visualizations
to help designers make sense of mobile data where multiple
sensors are feeding data at the same time. From it, they can
explore, author and fine-tune dynamic behaviours (both as
input happens, as well as once inputs happen). Finally, by
leveraging mouse and keyboard events, designers can use or
repurpose any familiar desktop application and have it read-
ily available for live prototyping, thus multiplying the num-
ber of tools at designers’ disposal. We demonstrated Astral’s
potential and workflow through a series of prototypes which
encompass common interaction design activities as informed
by prior explorations [39, 49, 63, 64] and our experience. We
hope our initial exploration can propel designers’ conversa-
tions around interactive behaviour and lower the challenges
of transitioning from design to implementation.

REFERENCES
[1] Daniel Ashbrook and Thad Starner. 2010.

MAGIC: a motion gesture design tool. In Proceed-
ings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '10). ACM, New
York, NY, USA, 2159-2168.
https://doi.org/10.1145/1753326.1753653

[2] Olivier Bau and Wendy E. Mackay. 2008. OctoPo-
cus: a dynamic guide for learning gesture-based
command sets. In Proceedings of ACM Symposium
on User Interface Software and Technology (UIST
'08). ACM, New York, NY, USA, 37-46.
https://doi.org/10.1145/1449715.1449724

[3] Dominikus Baur, Sebastian Boring, and Steven
Feiner. 2012. Virtual projection: exploring optical
projection as a metaphor for multi-device interac-
tion. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '12).
ACM, New York, NY, USA, 1693-1702.
http://dx.doi.org/10.1145/2207676.2208297

[4] Beginner's Mind Collective and David Shaw. 2012.
Makey Makey: improvising tangible and nature-
based user interfaces. In Proceedings of the ACM
International Conference on Tangible, Embedded
and Embodied Interaction (TEI '12). ACM, New
York, NY, USA, 367-370.
https://doi.org/10.1145/2148131.2148219

[5] Tracey Booth, Simone Stumpf, Jon Bird, and Sara
Jones. 2016. Crossed Wires: Investigating the Prob-
lems of End-User Developers in a Physical Compu-
ting Task. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Sys-
tems (CHI '16). ACM, New York, NY, USA, 3485-
3497. https://doi.org/10.1145/2858036.2858533

[6] John Brosz, Miguel A. Nacenta, Richard Pusch,
Sheelagh Carpendale, and Christophe Hurter. 2013.
Transmogrification: causal manipulation of visuali-
zations. In Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST
'13). ACM, New York, NY, USA, 97-106.
https://doi.org/10.1145/2501988.2502046

[7] Jesse Burstyn, Juan Pablo Carrascal, and Roel Ver-
tegaal. 2016. Fitts' Law and the Effects of Input
Mapping and Stiffness on Flexible Display Interac-
tions. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI
'16). ACM, New York, NY, USA, 3649-3658.
https://doi.org/10.1145/2858036.2858383

[8] Xiang ‘Anthony’ Chen and Yang Li. 2017. Improv:
An Input Framework for Improvising Cross-Device
Interaction by Demonstration. ACM Trans. Com-
put.-Hum. Interact. 24, 2, Article 15 (April 2017),
21 pages. https://doi.org/10.1145/3057862

[9] Morgan Dixon, Alexander Nied, and James
Fogarty. 2014. Prefab layers and prefab annotations:
extensible pixel-based interpretation of graphical in-
terfaces. In Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST
'14). ACM, New York, NY, USA, 221-230.
https://doi.org/10.1145/2642918.2647412

[10] Pierre Dragicevic and Jean-Daniel Fekete. 2004.
Support for input adaptability in the ICON toolkit.
In Proceedings of the International Conference on
Multimodal Interfaces (ICMI '04). ACM, New
York, NY, USA, 212-219.
http://dx.doi.org/10.1145/1027933.1027969

[11] Pierre Dragicevic, Gonzalo Ramos, Jacobo Bib-
liowitcz, Derek Nowrouzezahrai, Ravin Balakrish-
nan, and Karan Singh. 2008. Video browsing by
direct manipulation. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems (CHI '08). ACM, New York, NY, USA, 237-
246. https://doi.org/10.1145/1357054.1357096

[12] George W. Fitzmaurice. 1993. Situated infor-
mation spaces and spatially aware palmtop com-
puters. Commun. ACM 36, 7 (July 1993), 39-49.
http://dx.doi.org/10.1145/159544.159566

[13] Saul Greenberg. 2007. Toolkits and interface crea-
tivity. Multimedia Tools and Applications, 32(2),
Springer, 139-159. https://doi.org/10.1007/s11042-
006-0062-y

[14] Saul Greenberg and Bill Buxton. 2008. Usability
evaluation considered harmful (some of the time).
In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI '08).
ACM, New York, NY, USA, 111-120.
https://doi.org/10.1145/1357054.1357074

[15] Saul Greenberg and Chester Fitchett. 2001.
Phidgets: easy development of physical interfaces
through physical widgets. In Proceedings of the
ACM Symposium on User Interface Software and
Technology (UIST '01). ACM, New York, NY,
USA, 209-218.
http://dx.doi.org/10.1145/502348.502388

[16] Saul Greenberg, Sheelagh Carpendale, Nicolai
Marquardt and Bill Buxton (2011). Sketching User
Experiences: The Workbook. Elsevier.

[17] Tovi Grossman and Ravin Balakrishnan. 2005.
The bubble cursor: enhancing target acquisition by
dynamic resizing of the cursor's activation area.
In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI '05).
ACM, New York, NY, USA, 281-290.
http://dx.doi.org/10.1145/1054972.1055012

[18] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Gross-
man, and George Fitzmaurice. 2014. Kitty: sketch-

https://doi.org/10.1145/1753326.1753653
https://doi.org/10.1145/1449715.1449724
http://dx.doi.org/10.1145/2207676.2208297
https://doi.org/10.1145/2148131.2148219
https://doi.org/10.1145/2858036.2858533
https://doi.org/10.1145/2501988.2502046
https://doi.org/10.1145/2858036.2858383
https://doi.org/10.1145/3057862
https://doi.org/10.1145/2642918.2647412
http://dx.doi.org/10.1145/1027933.1027969
https://doi.org/10.1145/1357054.1357096
http://dx.doi.org/10.1145/159544.159566
https://doi.org/10.1007/s11042-006-0062-y
https://doi.org/10.1007/s11042-006-0062-y
https://doi.org/10.1145/1357054.1357074
http://dx.doi.org/10.1145/502348.502388
http://dx.doi.org/10.1145/1054972.1055012

ing dynamic and interactive illustrations. In Pro-
ceedings of the ACM Symposium on User Interface
Software and Technology (UIST '14). ACM, New
York, NY, USA, 395-405.
https://doi.org/10.1145/2642918.2647375

[19] Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki
Umetani, and George Fitzmaurice. 2016. Motion
Amplifiers: Sketching Dynamic Illustrations Using
the Principles of 2D Animation. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems (CHI '16). ACM, New York,
NY, USA, 4599-4609.
https://doi.org/10.1145/2858036.2858386

[20] Christopher Michael Hancock, 2003. Real-time
programming and the big ideas of computational
literacy. PhD Dissertation, Massachusetts Institute
of Technology, Cambridge, MA.

[21] Björn Hartmann, 2009. Gaining Design Insight
through Interaction Prototyping Tools. PhD The-
sis, Stanford University.

[22] Björn Hartmann, Leith Abdulla, Manas Mittal, and
Scott R. Klemmer. 2007. Authoring sensor-based
interactions by demonstration with direct manipu-
lation and pattern recognition. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI '07). ACM, New York,
NY, USA, 145-154.
https://doi.org/10.1145/1240624.1240646

[23] Björn Hartmann, Scott R. Klemmer, Michael
Bernstein, Leith Abdulla, Brandon Burr, Avi Rob-
inson-Mosher, and Jennifer Gee. 2006. Reflective
physical prototyping through integrated design,
test, and analysis. In Proceedings of the ACM Sym-
posium on User Interface Software and Technol-
ogy (UIST '06). ACM, New York, NY, USA, 299-
308. https://doi.org/10.1145/1166253.1166300

[24] Ken Hinckley and Hyunyoung Song. 2011. Sensor
synaesthesia: touch in motion, and motion in
touch. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI
'11). ACM, New York, NY, USA, 801-810.
https://doi.org/10.1145/1978942.1979059

[25] Lars Erik Holmquist. 2005. Prototyping: generat-
ing ideas or cargo cult designs?. interactions 12, 2
(March 2005), 48-54.
http://dx.doi.org/10.1145/1052438.1052465

[26] Kasper Hornbæk and Antti Oulasvirta. 2017. What
Is Interaction?. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems (CHI '17). ACM, New York, NY, USA,
5040-5052.
https://doi.org/10.1145/3025453.3025765

[27] Stephanie Houde, and Charles Hill. 1997. "What
do prototypes prototype?" Handbook of Human-
Computer Interaction (Second Edition), 367-381.

[28] Steven Houben and Nicolai Marquardt. 2015.
WatchConnect: A Toolkit for Prototyping Smart-
watch-Centric Cross-Device Applications. In Pro-
ceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '15). ACM,
New York, NY, USA, 1247-1256.
https://doi.org/10.1145/2702123.2702215

[29] J. F. Kelley. 1984. An iterative design methodol-
ogy for user-friendly natural language office infor-
mation applications. ACM Transactions on Infor-
mation Systems. 2, 1 (January 1984), 26-41.
http://dx.doi.org/10.1145/357417.357420

[30] Ju-Whan Kim and Tek-Jin Nam. 2013. EventHur-
dle: supporting designers' exploratory interaction
prototyping with gesture-based sensors. In Pro-
ceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '13). ACM,
New York, NY, USA, 267-276.
https://doi.org/10.1145/2470654.2470691

[31] James Lin and James A. Landay. 2008. Employing
patterns and layers for early-stage design and pro-
totyping of cross-device user interfaces. In Pro-
ceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '08). ACM,
New York, NY, USA, 1313-1322.
https://doi.org/10.1145/1357054.1357260

[32] David Ledo, Fraser Anderson, Ryan Schmidt, Lora
Oehlberg, Saul Greenberg, and Tovi Grossman.
2017. Pineal: Bringing Passive Objects to Life with
Embedded Mobile Devices. In Proceedings of the
SIGCHI Conference on Human Factors in Compu-
ting Systems (CHI '17). ACM, New York, NY,
USA, 2583-2593.
https://doi.org/10.1145/3025453.3025652

[33] David Ledo, Saul Greenberg, Nicolai Marquardt,
and Sebastian Boring. 2015. Proxemic-Aware Con-
trols: Designing Remote Controls for Ubiquitous
Computing Ecologies. In Proceedings of the 17th
International Conference on Human-Computer In-
teraction with Mobile Devices and Services (Mo-
bileHCI '15). ACM, New York, NY, USA, 187-
198. https://doi.org/10.1145/2785830.2785871

[34] David Ledo, Steven Houben, Jo Vermeulen, Nico-
lai Marquardt, Lora Oehlberg and Saul Greenberg.
2018. Evaluation Strategies for HCI Toolkit Re-
search. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Sys-
tems (CHI '18). ACM, New York, NY, USA.
https://doi.org/10.1145/3173574.3173610

[35] Germán Leiva and Michel Beaudouin-Lafon.
2018. Montage: A Video Prototyping System to

https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1145/2858036.2858386
https://doi.org/10.1145/1240624.1240646
https://doi.org/10.1145/1166253.1166300
https://doi.org/10.1145/1978942.1979059
https://doi.org/10.1145/3025453.3025765
https://doi.org/10.1145/2702123.2702215
http://dx.doi.org/10.1145/357417.357420
https://doi.org/10.1145/2470654.2470691
https://doi.org/10.1145/1357054.1357260
https://doi.org/10.1145/3025453.3025652
https://doi.org/10.1145/2785830.2785871
https://doi.org/10.1145/3173574.3173610

Reduce Re-Shooting and Increase Re-Usability.
In Proceedings of the 31st Annual ACM Sympo-
sium on User Interface Software and Technol-
ogy (UIST '18). ACM, New York, NY, USA, 675-
682. https://doi.org/10.1145/3242587.3242613

[36] Toby Jia-Jun Li, Amos Azaria, and Brad A. My-
ers. 2017. SUGILITE: Creating Multimodal
Smartphone Automation by Demonstration.
In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (CHI '17).
ACM, New York, NY, USA, 6038-6049.
https://doi.org/10.1145/3025453.3025483

[37] John H. Maloney and Randall B. Smith. 1995. Di-
rectness and liveness in the morphic user interface
construction environment. In Proceedings of the
ACM Symposium on User Interface and Software
Technology (UIST '95). ACM, New York, NY,
USA, 21-28.
http://dx.doi.org/10.1145/215585.215636

[38] Nicolai Marquardt, Till Ballendat, Sebastian Bor-
ing, Saul Greenberg, and Ken Hinckley. 2012.
Gradual engagement: facilitating information ex-
change between digital devices as a function of
proximity. In Proceedings of the ACM Interna-
tional Conference on Interactive Tabletops and
Surfaces (ITS '12). ACM, New York, NY, USA,
31-40. https://doi.org/10.1145/2396636.2396642

[39] Nolwenn Maudet, Germán Leiva, Michel
Beaudouin-Lafon, and Wendy Mackay. 2017. De-
sign Breakdowns: Designer-Developer Gaps in
Representing and Interpreting Interactive Systems.
In Proceedings of the ACM Conference on Com-
puter Supported Cooperative Work and Social
Computing (CSCW '17). ACM, New York, NY,
USA, 630-641.
https://doi.org/10.1145/2998181.2998190

[40] Andrew McCaleb Reach, and Chris North. 2017.
"The Signals and Systems Approach to Anima-
tion." arXiv preprint arXiv:1703.00521 (2017).

[41] Joseph McGrath. 1995. “Methodology Matters:
Doing Research in the Behavioral and Social Sci-
ences”. Readings in Human–Computer Interac-
tion. 152-169.

[42] Jan Meskens, Kris Luyten, and Karin Coninx.
2009. Shortening user interface design iterations
through realtime visualisation of design actions on
the target device. In IEEE Symposium on Visual
Languages and Human-Centric Computing
(VL/HCC 2009), pp. 132-135.
10.1109/VLHCC.2009.5295281

[43] Jan Meskens, Kris Luyten, and Karin Coninx.
2010. D-Macs: building multi-device user inter-
faces by demonstrating, sharing and replaying de-

sign actions. In Proceedings of the ACM Sympo-
sium on User Interface Software and Technol-
ogy (UIST '10). ACM, New York, NY, USA, 129-
138. https://doi.org/10.1145/1866029.1866051

[44] Jan Meskens, Jo Vermeulen, Kris Luyten, and
Karin Coninx. 2008. Gummy for multi-platform
user interface designs: shape me, multiply me, fix
me, use me. In Proceedings of the Working Con-
ference on Advanced Visual Interfaces (AVI '08).
ACM, New York, NY, USA, 233-240.
https://doi.org/10.1145/1385569.1385607

[45] Brad A. Myers. 1998. Scripting graphical applica-
tions by demonstration. In Proceedings of the
SIGCHI Conference on Human Factors in Compu-
ting Systems (CHI '98). ACM Press/Addison-Wes-
ley Publishing Co., New York, NY, USA, 534-
541. http://dx.doi.org/10.1145/274644.274716

[46] Brad Myers. 2002. Mobile devices for control.
In International Conference on Mobile Human-
Computer Interaction, Springer, Berlin, Heidel-
berg 1-8. https://doi.org/10.1007/3-540-45756-9_1

[47] Brad Myers, Choon Hong Peck, Jeffrey Nichols,
Dave Kong, and Robert Miller. 2001. Interacting
at a distance using semantic snarfing. In Interna-
tional Conference on Ubiquitous Computing.
Springer, Berlin, Heidelberg pp. 305-314.
https://doi.org/10.1007/3-540-45427-6_26

[48] Brad Myers, Scott E. Hudson, and Randy Pausch.
2000. Past, present, and future of user interface soft-
ware tools. ACM Transactions on Computer-Hu-
man Interaction. 7, 1 (March 2000), 3-28.
http://dx.doi.org/10.1145/344949.344959

[49] Brad Myers, Sun Young Park, Yoko Nakano, Greg
Mueller, and Andrew Ko. 2008. How designers
design and program interactive behaviors. 2008. In
Proc. Visual Languages and Human-Centric Com-
puting, 2008. VL/HCC 2008. IEEE Symposium on,
pp. 177-184. 10.1109/VLHCC.2008.4639081

[50] Dan R. Olsen, Jr.. 2007. Evaluating user interface
systems research. In Proceedings of the 20th annual
ACM symposium on User interface software and
technology (UIST ‘07). ACM, New York, NY,
USA, 251-258.
https://doi.org/10.1145/1294211.1294256

[51] Robert Penner. Robert Penner's Programming
Macromedia Flash MX. McGraw-Hill, Inc., 2002.

[52] Tristan Richardson, John Levine. 2011 The Re-
mote Framebuffer Protocol (No. RFC 6143). Tech-
nical Report. https://tools.ietf.org/html/rfc6143

[53] Marco de Sá, Luís Carriço, Luís Duarte, and Tiago
Reis. 2008. A mixed-fidelity prototyping tool for
mobile devices. In Proceedings of the Working
Conference on Advanced Visual Interfaces (AVI

https://doi.org/10.1145/3242587.3242613
https://doi.org/10.1145/3025453.3025483
http://dx.doi.org/10.1145/215585.215636
https://doi.org/10.1145/2396636.2396642
https://doi.org/10.1145/2998181.2998190
https://doi.org/10.1109/VLHCC.2009.5295281
https://doi.org/10.1145/1866029.1866051
https://doi.org/10.1145/1385569.1385607
http://dx.doi.org/10.1145/274644.274716
https://doi.org/10.1007/3-540-45756-9_1
https://doi.org/10.1007/3-540-45427-6_26
http://dx.doi.org/10.1145/344949.344959
https://doi.org/10.1109/VLHCC.2008.4639081
https://doi.org/10.1145/1294211.1294256
https://tools.ietf.org/html/rfc6143

'08). ACM, New York, NY, USA, 225-232.
https://doi.org/10.1145/1385569.1385606

[54] Ramik Sadana and Yang Li. 2016. Gesture mor-
pher: video-based retargeting of multi-touch inter-
actions. In Proceedings of the 18th International
Conference on Human-Computer Interaction with
Mobile Devices and Services (MobileHCI '16).
ACM, New York, NY, USA, 227-232.
https://doi.org/10.1145/2935334.2935391

[55] Dan Saffer. 2013. Microinteractions: designing
with details. O'Reilly Media, Inc.

[56] Valkyrie Savage, Colin Chang, and Björn Hart-
mann. 2013. Sauron: embedded single-camera sens-
ing of printed physical user interfaces. In Proceed-
ings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST '13). ACM, New
York, NY, USA, 447-456.
http://dx.doi.org/10.1145/2501988.2501992

[57] P. Frazer Seymour, Justin Matejka, Geoff Foulds,
Ihor Petelycky, and Fraser Anderson. 2017. AMI:
An Adaptable Music Interface to Support the Var-
ying Needs of People with Dementia. In Proceed-
ings of the 19th International ACM SIGACCESS
Conference on Computers and Accessibility
(ASSETS '17). ACM, New York, NY, USA, 150-
154. https://doi.org/10.1145/3132525.3132557

[58] Wolfgang Stuerzlinger, Olivier Chapuis, Dusty
Phillips, and Nicolas Roussel. 2006. User interface
façades: towards fully adaptable user interfaces.
In Proceedings of the ACM Symposium on User In-
terface Software and Technology (UIST '06).
ACM, New York, NY, USA, 309-318.
https://doi.org/10.1145/1166253.1166301

[59] Desney S. Tan, Brian Meyers, and Mary Czerwin-
ski. 2004. WinCuts: manipulating arbitrary window
regions for more effective use of screen space.

In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. ACM, New
York, NY, USA, 1525-1528.
https://doi.org/10.1145/985921.986106

[60] Frank Thomas, Ollie Johnston, and Disney Anima-
tion. 1981. The Illusion of Life. Abbeville Press,
New York, NY, USA.

[61] Nicolas Villar, James Scott, Steve Hodges, Kerry
Hammil, and Colin Miller. 2012 .NET Gadgeteer: A
Platform for Custom Devices. In Pervasive
2012.Lecture Notes in Computer Science, vol 7319.
Springer, Berlin, Heidelberg. 216-233
https://doi.org/10.1007/978-3-642-31205-2_14

[62] Jo Vermeulen, Kris Luyten, Karin Coninx, and Ni-
colai Marquardt. 2014. The design of slow-motion
feedback. In Proceedings of the SIGCHI Confer-
ence on Designing Interactive Systems (DIS '14).
ACM, New York, NY, USA, 267-270.
https://doi.org/10.1145/2598510.2598604

[63] The Tools Designers are Using Today (2015 Sur-
vey) http://tools.subtraction.com/ – Accessed April
01, 2018.

[64] The 2017 Annual Design Tools Survey https://ux-
tools.co/survey-2017 – Accessed August 27, 2018.

[65] Adobe Animate (formerly Adobe Flash)
https://www.adobe.com/ca/products/animate.html –
Accessed September 20, 2018.

[66] Arduino http://arduino.cc – Accessed April 01,
2018.

[67] Microsoft MakeCode https://makecode.com/ – Ac-
cessed September 20, 2018.

[68] Nintendo Labo - https://labo.nintendo.com/ - Ac-
cessed September 20, 2018.

[69] TeamViewer http://www.teamviewer.com – ac-
cessed January 11, 2019

https://doi.org/10.1145/1385569.1385606
https://doi.org/10.1145/2935334.2935391
http://dx.doi.org/10.1145/2501988.2501992
https://doi.org/10.1145/3132525.3132557
https://doi.org/10.1145/1166253.1166301
https://doi.org/10.1145/985921.986106
https://doi.org/10.1007/978-3-642-31205-2_14
https://doi.org/10.1145/2598510.2598604
http://tools.subtraction.com/
https://uxtools.co/survey-2017
https://uxtools.co/survey-2017
https://www.adobe.com/ca/products/animate.html
http://arduino.cc/
https://makecode.com/
https://labo.nintendo.com/
http://www.teamviewer.com/

	Astral: Prototyping Mobile and Smart Object Interactive Behaviours Using Familiar Applications
	ABSTRACT
	Author Keywords
	CCS Concepts

	INTRODUCTION
	ASTRAL
	Benefits and Contributions

	Related Work And Goals
	Prototyping Tools
	Mobile Prototyping
	Physical Prototyping

	Extending Existing Infrastructures
	Continuous Animation

	Working with ASTRAL
	Main Interface
	Mirroring Desktop Contents
	Specifying Input Remapping through Rules
	Merging Several Rules into Rulesets
	Deciding When Rules are Triggered

	Sensor Selector

	Usage Scenario: Creating a Level
	Step 0: Illustrator and AfterEffects
	Step 1: Starting Astral
	Step 2: Sensor Selector
	Step 3: Rule Editor
	Step 4: Mapping Mouse Coordinates to the AfterEffects Timeline
	Step 5: Fine-Tuning through Easing Functions

	Prototypes And Interaction Scenarios
	Video-Based Prototyping
	Authoring Open-Ended Interaction Techniques
	Prototyping Multiple Alternatives
	Iterative Prototyping at Multiple Fidelities
	Authoring Smart Object Behaviours

	Implementation
	DISCUSSION
	Astral and Designers
	Target Audience
	State Models
	Expressive Leverage and Flexibility
	Overcoming ‘Input Locks’
	Device Relativism and Saving Prototypes
	Evaluation Approach

	Acknowledgements
	Conclusion
	REFERENCES

